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ABSTRACT
Reasoning on inconsistent and uncertain data is challenging, espe-
cially for Knowledge-Graphs (KG) to abide temporal consistency.
Our goal is to enhance inference with more general time interval
semantics that specify their validity, as regularly found in historical
sciences. We propose a new Temporal Markov Logic Networks
(TMLN) model which extends the Markov Logic Networks (MLN)
model with uncertain temporal facts and rules. Total and partial tem-
poral (in)consistency relations between sets of temporal formulae
are examined. We then propose a new Temporal Parametric Seman-
tics (TPS) which allows combining several sub-functions leading
to different assessment strategies. Finally, we present the NeoMaPy
tool, to compute the MAP inference on MLNs and TMLNs with
several TPS. We compare our performances with state-of-the-art
inference tools and exhibit faster and higher quality results.
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1 INTRODUCTION
Reasoning on large data sets to obtain pieces of information is an
open challenge [4, 14, 18, 22]. Most approaches model information
with Knowledge Graphs (KGs) [13], and rely on Ontologies [23],Ma-
chine Learning [30] or Neural Networks [19] representations. Then,
Description Logic [17] and Temporal Logic [27] may be used to verify
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domain rules. Historians, for example, frequently reason on sets of
facts. Any fact is uncertain, and several facts may contradict one an-
other (generating conflicts). Temporal information is crucial: outside
of a temporal interval, a fact becomes false. Weighting facts with
temporal and uncertainty information, an historian may resolve
conflicts and find consistent sets of facts forming new hypotheses.

Markov Logic Networks (MLNs) [24] combine Markov networks
and First Order Logic, by attaching weights to logic formulae.

It can be seen as a formalism that extends First Order Logic to
allow formulae that can be violated with some penalty. MLNs allow
reasoning on the set of possible worlds of a knowledge base by look-
ing for the most probable world, according to a semantic computing
the probability of the worlds, this process is called Maximum A-
Posteriori (MAP) inference [20, 21, 25, 28]. Several MLNs extensions
have been devised to work on different types of data [7, 26, 29],
and one focused on reasoning on Uncertain Temporal Knowledge
Graphs (UTKG) with specific temporal inference rules [6]. However,
the state of the art integrating temporal information into MLN is
conceptually insufficient, and computing the MAP inference also re-
quires to build possible worlds iteratively with logic programming
(ILP) on conflictual facts to find the one that satistifies the more
without conflicts [8]. By parallelizing and estimating aggregations,
they optimize the ILP formulation, but solving this ILP is highly
dependent on the number of facts that violate constraints.

In this paper, we introduce an extension ofMLNs called Temporal
Markov Logic Networks (TMLN), built on (a temporal) many-sorted
logic, for reasoning on both time validity and uncertainty [11]. We
extend the notion of uncertainty to rules, and present an adapted
reasoning to deal with both uncertain facts and rules. We define a
new temporal semantics and a temporal extension to MAP infer-
ence [25]. This MAP inference produces instantiations (also called
worlds), i.e., extended sets of facts maximising the score w.r.t. a tem-
poral semantics. The proposed temporal semantics is parametric:
it allows combining several sub-functions for various consistency
validations. Our completely different and optimistic approach (i.e.,
based on the assumption that conflicts of operations on a database
are rare) to compute MAP inferences, NeoMaPy, relies on building
compatible worlds based on a conflict graphs, instead of iteratively
building valid worlds (ILP solving).It allows computing efficiently
the MAP thanks to a heuristic, and interacting with results for
explaining facts choices. Finally, we present a complete implemen-
tation of NeoMaPy, built with Neo4j and the heuristic MaPy as a
Python script which computes the parametric MAP inference.

Paper organisation. Section 2 exposes relevant background
information on Many-Sorted First-Order logic and its reasoning. In
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Section 3, we introduce our original TMLN representation and its
semantics required for MAP inference (Section 4). Then, we present
our new approach to MAP inference computation in Section 5 and
experiment it in Section 6, before concluding the paper.

2 BACKGROUND
In a seminal work [6], Chekol et al. formalise theUncertain Temporal
Knowledge Graphs (UTKG) approach, which integrates both time
and uncertainty in KGs to reach a certain world maximisation. How-
ever, they do not take into account the possibility to have uncertain
rules. We enlarge their vision by putting time at the heart of reason-
ing. We formalise the notion of temporal uncertainty, by combining
certain and uncertain formulae, allowing for easier manipulations
and better analyses.

2.1 Many-Sorted First Order Logic
We start by presenting the Many-Sorted first-Order Logic. Low-
ercase (resp. uppercase) Greek letters like 𝜙,𝜓 (resp. Φ,Ψ) denote
formulae (resp. sets of formulae).

Definition 1 (Many-Sorted FOL). Let So = {𝑠1, . . . , 𝑠𝑛} be a set
of sorts. AMany-Sorted first-Order Logic MS-FOL, is a set of formulae
built up by induction from: a set C = {𝑎1, . . . , 𝑎𝑙 } of constants, a set
V = {𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠 , . . . | 𝑠 ∈ So} of variables, a set P = {𝑃1, . . . , 𝑃𝑚}
of predicates, a function ar : P → N which tells the arity of any
predicate, a function sort s.t. for 𝑃 ∈ P, sort(𝑃) ∈ Soar(𝑃 ) , and for
𝑐 ∈ C, sort(𝑐) ∈ So, the usual connectives (¬, ∨, ∧,→,↔), Boolean
constants (⊤ and ⊥) and quantifier symbols (∀, ∃). A ground formula
is a formula without any variable.

Example 1. For instance let So = {𝑠1, 𝑠2}, let 𝑃1 ∈ P such that
sort(𝑃1) = 𝑠2 × 𝑠1 × 𝑠1, let 𝑎1, 𝑎2, 𝑡1, 𝑡2 ∈ C such that sort(𝑎1) =
sort(𝑎2) = 𝑠2, sort(𝑡1) = sort(𝑡2) = 𝑠1 and let 𝑥𝑠2 ∈ V. We can
then build the following MS-FOL formulae: 𝑃1 (𝑎1, 𝑡1, 𝑡2),
∀𝑥𝑠2𝑃1 (𝑥𝑠2 , 𝑡1, 𝑡2). However, 𝑃1 (𝑡1, 𝑡2, 𝑎1) or ∀𝑥𝑠2𝑃1 (𝑎1, 𝑎2, 𝑥𝑠2 ) can-
not be built because they do not respect the sorts.

MS-FOL formulae are evaluated via a notion of structure called
𝑛-sorted structures [15]. Classical first-order logic formulae are
captured as 1-sorted structures.

Definition 2 (Structure). A 𝑛-sorted structure is
St = ({𝐷1, . . . , 𝐷𝑛}, {𝑅1, . . . , 𝑅𝑚}, {𝑐1, . . . , 𝑐𝑙 }), where 𝐷1, . . . , 𝐷𝑛

are the (non-empty) domains, 𝑅1, . . . , 𝑅𝑚 are relations between do-
mains’ elements, and 𝑐1, . . . , 𝑐𝑙 are distinct constants in the domains.

Our running example is presented in Example 2. Each sentence
gathers biographical elements about a French philosopher from the
14th century, Nicole Oresme.

Example 2. Nicole Oresme was a person and a philosopher born
in the Middle Ages between 1320 and 1382. Nicole Oresme may have
attended the College of Navarre around 1340-1354 and more likely
around 1355-1360. Nicole Oresme possibly did not attend the College
of Navarre around 1353-1370. Sometimes, a person who lived in the
Middle Ages and studied at the College of Navarre came from a
peasant family. Usually, a philosopher born in the Middle Ages did
not come from a peasant family.

Though without uncertainty, we may then define a suitable
structure in MS-FOL.

Example 3. An example of structure associated with the MS-FOL
from Example 2 is Stℎ𝑖𝑠𝑡 = ({𝑇𝑖𝑚𝑒,𝐶𝑜𝑛𝑐𝑒𝑝𝑡}, {𝑃𝑒𝑟𝑠𝑜𝑛, 𝑃ℎ𝑖𝑙𝑜𝑠𝑜𝑝ℎ𝑒𝑟,
𝐿𝑖𝑣𝑒𝑃𝑒𝑟𝑖𝑜𝑑, 𝑃𝑒𝑎𝑠𝑎𝑛𝑡𝐹𝑎𝑚𝑖𝑙𝑦, 𝑆𝑡𝑢𝑑𝑖𝑒𝑑}, {𝑡𝑚𝑖𝑛, 1300, 1301, 1302, . . . ,
1400, 𝑡𝑚𝑎𝑥 , 𝑁𝑂,𝑀𝐴,𝐶𝑜𝑁 }), in which:
– 𝑇𝑖𝑚𝑒 is the set of time points, corresponding to the sort 𝑠1 and
𝐶𝑜𝑛𝑐𝑒𝑝𝑡 is the set of all non-temporal objects, corresponding to the
sort 𝑠2,
– 𝑃𝑒𝑟𝑠𝑜𝑛, 𝑃ℎ𝑖𝑙𝑜𝑠𝑜𝑝ℎ𝑒𝑟, 𝐿𝑖𝑣𝑒𝑃𝑒𝑟𝑖𝑜𝑑 , etc. are the predicate symbols’ re-
lations (e.g., 𝑃𝑒𝑟𝑠𝑜𝑛 ⊆ 𝐶𝑜𝑛𝑐𝑒𝑝𝑡 × 𝑇𝑖𝑚𝑒 × 𝑇𝑖𝑚𝑒 indicates which
elements are a person).
– 𝑡𝑚𝑖𝑛 , 1300, 1301, . . ., 1400, 𝑡𝑚𝑎𝑥 are elements of the domain 𝑇𝑖𝑚𝑒

associated with the sort 𝑠1, while 𝑁𝑂 (Nicolas Oresme), 𝑀𝐴 (Mid-
dle Ages) and 𝐶𝑜𝑁 (College of Navarre) are elements of the domain
𝐶𝑜𝑛𝑐𝑒𝑝𝑡 associated with the sort 𝑠2.

2.2 MS-FOL Reasoning
Now, we define MS-FOL formulae for interpretation.

Definition 3 (Interpretation). An interpretation ISt over a
structure St assigns to elements of the MS-FOL vocabulary some values
in the structure St. Formally,
– ISt (𝑠𝑖 ) = 𝐷𝑖 , for 𝑖 ∈ {1, . . . , 𝑛} (each sort symbol is assigned to a
domain),
– ISt (𝑃𝑖 ) = 𝑅𝑖 , for 𝑖 ∈ {1, . . . ,𝑚} (each predicate symbol is assigned
to a relation),
– ISt (𝑎𝑖 ) = 𝑐𝑖 , for 𝑖 ∈ {1, . . . , 𝑙} (each constant symbol is assigned to
a value).
Then, satisfying formulae is recursively defined by:
– ISt |= 𝑃𝑖 (𝑎1, . . . , 𝑎𝑘 ) iff (ISt (𝑎1), . . . , ISt (𝑎𝑘 )) ∈ 𝑅𝑖 ,
– ISt |= ∃𝑥𝑠𝑖𝜙 iff ISt,𝑥𝑠𝑖←𝑣 |= 𝜙 for some 𝑣 ∈ 𝐷𝑖 ,
– ISt |= ∀𝑥𝑠𝑖𝜙 iff ISt,𝑥𝑠𝑖←𝑣 |= 𝜙 for each 𝑣 ∈ 𝐷𝑖 ,
– ISt |= 𝜙 ∧𝜓 iff ISt |= 𝜙 and ISt |= 𝜓 ,
– ISt |= 𝜙 ∨𝜓 iff ISt |= 𝜙 or ISt |= 𝜓 ,
– ISt |= ¬𝜙 iff ISt ̸ |= 𝜙 ,
where ISt,𝑥𝑠𝑖←𝑣 is a modified version of ISt s.t. the variable 𝑥𝑠𝑖 is
replaced by a value 𝑣 in the domain 𝐷𝑖 corresponding to the sort
symbol 𝑠𝑖 . finally, if Φ is a set of formulae, then ISt |= Φ iff ISt |= 𝜙

for each 𝜙 ∈ Φ.

Definition 3 does not target the satisfaction of implications and
equivalences, while they can be defined by: (𝜙 → 𝜓 ) ≡ (¬𝜙 ∨𝜓 ),
and (𝜙 ↔ 𝜓 ) ≡ (𝜙 → 𝜓 ) ∧ (𝜓 → 𝜙). For instance, the set of inter-
pretations of the formula 𝑃 (𝑎) ∨ 𝑃 (𝑏) is equal to {{𝑃 (𝑎)}, {𝑃 (𝑏)},
{𝑃 (𝑎), 𝑃 (𝑏)}} and for 𝑃 (𝑎) ∧ 𝑃 (𝑏) is {{𝑃 (𝑎), 𝑃 (𝑏)}}.

With structures and interpretations on TMLNs, we now define
the consequence relations and logical consequences over MS-FOL.

Definition 4 (Conseqence Relation). Let 𝜙 and 𝜓 be two
MS-FOL formulae. We say that𝜓 is a consequence of 𝜙 , denoted by
𝜙 ⊢ 𝜓 , if for any structure St, and any interpretation ISt over St,
ISt |= 𝜙 implies ISt |= 𝜓 .

Definition 5 (Logical Conseqences - Cn). Let 𝜙 ∈ MS-FOL.
The function Cn(𝜙) is the set of all logical consequences of 𝜙 , i.e.,
Cn(𝜙) = {𝜓 ∈ MS-FOL | 𝜙 ⊢ 𝜓 }.

Cn returns an infinite set of formulae, but for clarity we consider
only one formula per equivalent class and only the predicates and
constants appearing in the original formulae. So that Cn(𝑃 (𝑎) ∨
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𝑃 (𝑏)) = {𝑃 (𝑎) ∨ 𝑃 (𝑏)} and Cn(𝑃 (𝑎) ∧ 𝑃 (𝑏)) = {𝑃 (𝑎), 𝑃 (𝑏), 𝑃 (𝑎) ∧
𝑃 (𝑏), 𝑃 (𝑎) ∨ 𝑃 (𝑏)}.

Since we are working with Temporal Formulae (TF), we ex-
tend inferences according to predicates’ temporal interval such
that for each formula, each predicate, we can also infer all possi-
ble temporal subsets. For example, Cn(𝑃 (𝑎, 𝑡1, 𝑡2) ∧ 𝑃 (𝑏, 𝑡2, 𝑡2)) =
{𝑃 (𝑎, 𝑡1, 𝑡1), 𝑃 (𝑎, 𝑡1, 𝑡2), 𝑃 (𝑎, 𝑡2, 𝑡2), 𝑃 (𝑏, 𝑡2, 𝑡2), 𝑃 (𝑎, 𝑡1, 𝑡1)∧𝑃 (𝑏, 𝑡2, 𝑡2),
. . . , 𝑃 (𝑎, 𝑡2, 𝑡2)∨𝑃 (𝑏, 𝑡2, 𝑡2)}. In the rest of the article, if not specified
we consider the temporally extended version of Cn.

3 TEMPORAL AND UNCERTAIN
KNOWLEDGE REPRESENTATION

Markov Logic Networks (MLNs) combine Markov Networks and
first-Order Logic (FOL) by attaching weights to first-order formulae
and treating them as feature templates for Markov Networks [24].
We extend this framework to temporal information by resorting to
Many-Sorted first-Order Logic (MS-FOL).

3.1 Temporal Markov Logic Networks
We start with the Temporal Many-Sorted first-Order Logic TF-FOL
consisting of Temporal Formulae, i.e., combined formulae and tem-
poral predicates from a temporal domain.

Definition 6 (Temporal Many-Sorted FOL). A TF-FOL eval-
uated by a structure St is a constrained MS-FOL where |So| ≥ 2, for
any interpretation ISt (𝑠1) = 𝑇𝑖𝑚𝑒 , any predicate 𝑃𝑖 ∈ TF-FOL has
ar(𝑃𝑖 ) ≥ 3 with the sort of the last two parameters belonging to 𝑠1
and 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 are time constants indicating the minimum and
maximum time points for any pre-order between the time constants.

Using this constrained MS-FOL accompanied with a temporal
domain (𝑇𝑖𝑚𝑒) and temporal predicates (the last two parameters
indicate the validity temporal bounds), we may represent temporal
facts and rules. Finally, Temporal Markov Logic Networks (TMLN)
extend TF-FOL (resp. MLN) by associating a degree of certainty to
each formula (resp. by adding a temporal validity to the predicates).

Definition 7 (TMLN). A Temporal Markov Logic NetworkM =

(F,R), based on a TF-FOL, is a set of weighted temporal facts and rules
where F and R are sets of pairs s.t.:
– F = {(𝜙1,𝑤1),. . . , (𝜙𝑛,𝑤𝑛)} with ∀𝑖 ∈ {1,. . . , 𝑛}, 𝜙𝑖 ∈ TF-FOL such
that it is a ground formula and𝑤𝑖 ∈ [0,∞[,
– R = {(𝜙 ′1,𝑤

′
1),. . . , (𝜙

′
𝑘
,𝑤 ′

𝑘
)} with ∀𝑖 ∈ {1,. . . , 𝑘}, 𝜙 ′

𝑖
∈ TF-FOL such

that it is not a ground formula and in the form (premises, conclusion),
i.e., (𝜓1∧. . .∧𝜓𝑙 ) → 𝜓𝑙+1 where ∀𝑗 ∈ {1,. . . , 𝑙 + 1},𝜓 𝑗 ∈ TF-FOL, and
𝑤𝑖 ∈ [0,∞[.
The universe of all TMLNs is denoted by TMLN.

We want to extend MLN to reason on uncertain and temporal
knowledge graphs which contain only facts and rules. A fact is
a ground formula and a rule contains variables. However, a not
ground formula is not always a rule, for instance∀𝑥𝑃 (𝑥) is not a rule.
We choose to use one specific syntax (𝜓1∧. . .∧𝜓𝑙 ) → 𝜓𝑙+1 to define
a rule but any equivalent syntax works (e.g. ¬𝜓1∨. . .∨¬𝜓𝑙 ∨𝜓𝑙+1).

In our UTKGs we have uncertain knowledge which are described
with a weight𝑤 ∈ [0, 1[, and we have certain information or hard
constraints, represented with a very large numbers, e.g.,𝑤 = 1010.

In the following, we simplify the example by directly using the
structure defined in Example 3 (c.f. Section 2.1).

Example 2 (Continued). The TMLN representation of our running
example can be found in Table 1. We identify 6 independent facts
and 2 rules, each one with temporal validity and certainty weights
(arbitrary extracted from Example 2).

In classical MLN approaches, before reasoning on the model, one
must first produce a ground MLN by instantiating the variables
in the formulae according to a set of constants. However, starting
from a UTKG, we have a finite amount of initial information (facts)
to reason on with rules and the parameters’ order in a predicate is
important. For instance, according to Example 2, in the rule 𝑅1, we
cannot instantiate Studied(x, CoN, t, t’) by Studied(NO, CoN, 1340,
1382) (this information with this interval is unknown) or it would
be a non-sense to instantiate the predicate as Studied(MA, CoN,
1340, 1354) (the first parameter must be a Person).

For these reasons, we choose to obtain the ground MLN by
replacing the rules’ variables by constants according to the facts
present in our TMLN. We call this step instantiation.

3.2 TMLN Instantiation
LetM be a TMLN, we denote by MI(M) theMaximal TMLN Instanti-
ation ofM. MI(M) contains the set ofM’s facts and all ground rules
that can be constructed by instantiating all its predicates containing
variables by other deductible ground predicates (Reasoning with
Def. 4 and 5). A ground rule’s weight is the minimum of the weights
of the formulae inM used to construct the instantiated rule.

Formally, to define the set of instantiations, we have to define two
useful notions. Firstly, we denote by TF(M) = ⋃

(𝜙,𝑤 ) ∈M
𝜙 the set of

temporal formulae (without weight) of M ∈ TMLN. Secondly, we de-
fine the function W : TF-FOL×TMLN→ [0,∞[, returning themaximal
weight of a temporal formula deductible from a TMLN: W(𝜙,M) =
max(minw (M1), . . . , minw (M𝑚)) s.t. {M1, . . . ,M𝑚} = {M𝑖 ⊆ M |
TF(M𝑖 ) ⊢ 𝜙 and �M′

𝑖
⊂ M𝑖 s.t. TF(M′𝑖 ) ⊢ 𝜙} and

minw (M𝑖 = {(𝜓1,𝑤1), . . . , (𝜓𝑙 ,𝑤𝑙 )}) = min(𝑤1, . . . ,𝑤𝑙 ).

Definition 8 (TMLN Instantiation). Given M = (F,R) ∈
TMLN, the set of instantiations MI ofM is defined as follows:

MI(M) = F ∪ {
(
(𝜙 ′1 ∧ . . . ∧ 𝜙 ′

𝑘
→ 𝜙𝑙+1)𝑉←𝐶 ,𝑤

′) | ∃(𝜙1 ∧
. . . ∧ 𝜙𝑙 → 𝜙𝑙+1,𝑤) ∈ R s.t. 𝜙 ′1 ∧ . . . ∧ 𝜙 ′

𝑘
⊢ 𝜙1 ∧ . . . ∧ 𝜙𝑙 ,𝑉 =

{𝑣1, . . . , 𝑣𝑛} is the set of variables in 𝜙1∧. . .∧𝜙𝑘 → 𝜙𝑘+1,𝐶 = ⟨𝑐1, . . . , 𝑐𝑛⟩
is a vector of constants replacing each occurrence of the variables,
𝑉 ′
𝑖
⊆ 𝑉 is the set of variables in 𝜙𝑖 ,𝐶

′
𝑖
⊆ 𝐶 is the vector of con-

stants replaced in 𝜙𝑖 and the instantiated rule satisfies the 2 following
conditions:

1. ∀𝜙 ′
𝑖
∈ {𝜙 ′1, . . . , 𝜙

′
𝑘
}, 𝜙 ′

𝑖𝑉 ′
𝑖
←𝐶′

𝑖

∈ Cn(TF(M))
2.𝑤 ′ = min(𝑤, W(𝜙1𝑉 ′1←𝐶′1

,M), . . . , W(𝜙𝑘𝑉 ′
𝑘
←𝐶′

𝑘
,M)}

where 𝜙𝑉←𝐶 is the formula 𝜙 s.t. all the occurrences of the variable
𝑣𝑖 ∈ 𝑉 are replaced by the constant 𝑐𝑖 ∈ 𝐶 .

Currently, we only deal with universal (i.e., ∀) rules and no ex-
istential one (i.e., ∃), to simplify the maximal TMLN instantiation.
Indeed, with existential rules, we would have to deal with a set of
sets of instantiations. Given that we would not know which set
of instantiations would be true. We keep this question for future
works.

From Example 2, the instantiation of 𝑅1 (resp. 𝑅2) consists of
𝐺𝑅11 (from 𝐹1, 𝐹3 and 𝐹4) and 𝐺𝑅12 (from 𝐹1, 𝐹3 and 𝐹5) (resp.
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𝑭1 (𝑃𝑒𝑟𝑠𝑜𝑛 (𝑁𝑂, 1320, 1382) , 1010 )
𝑭2 (𝑃ℎ𝑖𝑙𝑜𝑠𝑜𝑝ℎ𝑒𝑟 (𝑁𝑂, 1320, 1382) , 1010 )
𝑭3 (𝐿𝑖𝑣𝑒𝑃𝑒𝑟𝑖𝑜𝑑 (𝑁𝑂,𝑀𝐴, 1320, 1382) , 1010 )
𝑭4 (𝑆𝑡𝑢𝑑𝑖𝑒𝑑 (𝑁𝑂,𝐶𝑜𝑁, 1340, 1354) , 0.4)
𝑭5 (𝑆𝑡𝑢𝑑𝑖𝑒𝑑 (𝑁𝑂,𝐶𝑜𝑁, 1355, 1360) , 0.7)
𝑭6 (¬𝑆𝑡𝑢𝑑𝑖𝑒𝑑 (𝑁𝑂,𝐶𝑜𝑁, 1353, 1370) , 0.5)
𝑹1 (∀𝑥𝑠2 , 𝑡𝑠11 , 𝑡

′𝑠1
1 , 𝑡

𝑠1
2 , 𝑡

′𝑠1
2 , 𝑡

𝑠1
3 , 𝑡

′𝑠1
3 , (𝑃𝑒𝑟𝑠𝑜𝑛 (𝑥𝑠2 , 𝑡𝑠11 , 𝑡

′𝑠1
1 ) ∧ 𝐿𝑖𝑣𝑒𝑃𝑒𝑟𝑖𝑜𝑑 (𝑥

𝑠2 , 𝑀𝐴, 𝑡
𝑠1
2 , 𝑡

′𝑠1
2 ) ∧ 𝑆𝑡𝑢𝑑𝑖𝑒𝑑 (𝑥

𝑠2 ,𝐶𝑜𝑁, 𝑡
𝑠1
3 , 𝑡

′𝑠1
3 ) )

→ 𝑃𝑒𝑎𝑠𝑎𝑛𝑡𝐹𝑎𝑚𝑖𝑙𝑦 (𝑥𝑠2 , 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ) , 0.5)
𝑹2 (∀𝑥𝑠2 , 𝑡𝑠11 , 𝑡

′𝑠1
1 , 𝑡

𝑠1
2 , 𝑡

′𝑠1
2 , (𝑃ℎ𝑖𝑙𝑜𝑠𝑜𝑝ℎ𝑒𝑟 (𝑥𝑠2 , 𝑡𝑠11 , 𝑡

′𝑠1
1 ) ∧ 𝐿𝑖𝑣𝑒𝑃𝑒𝑟𝑖𝑜𝑑 (𝑥

𝑠2 , 𝑀𝐴, 𝑡
𝑠1
2 , 𝑡

′𝑠1
2 ) ) → ¬𝑃𝑒𝑎𝑠𝑎𝑛𝑡𝐹𝑎𝑚𝑖𝑙𝑦 (𝑥𝑠2 , 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ) , 0.8)

Table 1: Example of a TMLN for Nicole Oresme.

𝑮𝑹11 = ( (𝑃𝑒𝑟𝑠𝑜𝑛 (𝑁𝑂, 1320, 1382) ∧ 𝐿𝑖𝑣𝑒𝑃𝑒𝑟𝑖𝑜𝑑 (𝑁𝑂,𝑀𝐴, 1320, 1382) ∧ 𝑆𝑡𝑢𝑑𝑖𝑒𝑑 (𝑁𝑂,𝐶𝑜𝑁, 1340, 1354) ) → 𝑃𝑒𝑎𝑠𝑎𝑛𝑡𝐹𝑎𝑚𝑖𝑙𝑦 (𝑁𝑂, 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ) 0.4)
𝑮𝑹12 = ( (𝑃𝑒𝑟𝑠𝑜𝑛 (𝑁𝑂, 1320, 1382) ∧ 𝐿𝑖𝑣𝑒𝑃𝑒𝑟𝑖𝑜𝑑 (𝑁𝑂,𝑀𝐴, 1320, 1382) ∧ 𝑆𝑡𝑢𝑑𝑖𝑒𝑑 (𝑁𝑂,𝐶𝑜𝑁, 1355, 1360) ) → 𝑃𝑒𝑎𝑠𝑎𝑛𝑡𝐹𝑎𝑚𝑖𝑙𝑦 (𝑁𝑂, 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ) , 0.5)
𝑮𝑹2 = ( (𝑃ℎ𝑖𝑙𝑜𝑠𝑜𝑝ℎ𝑒𝑟 (𝑁𝑂, 1320, 1382) ∧ 𝐿𝑖𝑣𝑒𝑃𝑒𝑟𝑖𝑜𝑑 (𝑁𝑂,𝑀𝐴, 1320, 1382) ) → ¬𝑃𝑒𝑎𝑠𝑎𝑛𝑡𝐹𝑎𝑚𝑖𝑙𝑦 (𝑁𝑂, 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ) , 0.8)

Table 2: Ground Rules Instantiating 𝑅1 and 𝑅2 (from Table 1) for Nicole Oresme.

𝐺𝑅2 from 𝐹2 and 𝐹3). Hence 𝐺𝑅11 has a weight of 0.4, 𝐺𝑅12 of
0.5 and 𝐺𝑅2 of 0.8, see Table 2. A TMLN instantiation 𝐼 ⊆ MI(M)
is a TMLN only composed of ground formulae. 𝐼 is also called a
state of the TMLN M. The universe of all TMLN instantiations is
denoted by TMLN∗. An instantiation can be inconsistent. In our ex-
ample,𝐺𝑅11, 𝐹1, 𝐹3, 𝐹4 imply 𝑃𝑒𝑎𝑠𝑎𝑛𝑡𝐹𝑎𝑚𝑖𝑙𝑦 (𝑁𝑂, 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ) while
𝐺𝑅2, 𝐹2, 𝐹3 imply ¬𝑃𝑒𝑎𝑠𝑎𝑛𝑡𝐹𝑎𝑚𝑖𝑙𝑦 (𝑁𝑂, 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ).Then, to obtain
the most consistent set of instantiations and find the most probable
state of the world [6], we compute theMaximum A-Posteriori (MAP)
inference.

4 TEMPORAL AND UNCERTAIN
KNOWLEDGE REASONING

We integrate semantics to TMLNs, then we examine the notions of
temporal (in)consistency.

4.1 Temporal MAP Inference
Usually, a Markov logic networkM defines a log-linear probability
distribution over possible worlds (i.e., instantiations) 𝜔 as follows
𝑝M (𝜔) = 1

𝑍
exp

( ∑
(𝜙,𝑤 ) ∈M 𝑤𝑛𝜙 (𝜔)

)
, where 𝑛𝜙 (𝜔) is the num-

ber of true groundings of 𝜙 in the possible world 𝜔 and Z is a
normalisation constant to ensure that 𝑝M can be interpreted as a
probability distribution. One common inference task in MLNs is
the MAP inference, given a set of ground formulae (the facts) the
goal is to compute the most probable instantiations. For each 𝜔 ,∑
(𝜙,𝑤 ) ∈M 𝑤𝑛𝜙 (𝜔) evaluates the value of the instantiation 𝜔 and

we call this computation: a semantics. For the rest of this article, we
will omit any mention of the normalisation that takes place after
semantics, which is only a technical detail.

Semantics computes the strength of a TMLN state. We denote
the universe of all semantics by Sem, such that for any S ∈ Sem,
S : TMLN∗ → [0, +∞[.
Temporal Maximum A-Posteriori (MAP) Inference in TMLN
returns the most probable, temporally consistent, and expanded
state w.r.t. a given semantics. Given M ∈ TMLN and S ∈ Sem, a
method solving a MAP problem is denoted by: map : TMLN× Sem→
P(TMLN∗) where P(𝑋 ) denote the powerset of 𝑋 , such that:

map(M,S) = {𝐼 | 𝐼 ∈ argmax
𝐼 ⊆ MI(M)

S(𝐼 ) and �𝐼 ′ ∈ argmax
𝐼 ′ ⊆ MI(M)

S(𝐼 ′) s.t.

𝐼 ⊂ 𝐼 ′}.

4.2 Temporal Consistency and Inconsistency
We study here new temporal consistency interactions required to
define our Temporal MAP inference. Temporal Consistency relations
need to be refined according to predicates temporal validity. For
a predicate and its negation, no clear definition exists to express
the temporal consistency based on their time intervals. We propose
a temporal consistency with a general case (partial) and a special
case (total).

To establish the different temporal consistency relations, we
introduce a function TI to create pre-orders between the temporal
constants in the domain 𝑇𝑖𝑚𝑒 of a TF-FOL and which extracts the
time points interval from two constants.

Definition 9 (Temporal (in)consistency). Let a set of formulae
Φ ⊆ TF-FOL. In all the following notions of temporal consistency, we
will exceptionally use the classical (non-temporal) logical consequence
of Cn in order to work on the original maximal predicate interval (and
not all its subsets).
Temporal consistency:

– Φ has a partial temporal consistency denoted by pCon(Φ) iff:
∀𝜙,𝜓 ∈ Cn(Φ) s.t. 𝜙 = 𝑃 (𝑥1,. . . , 𝑥𝑘 , 𝑡1, 𝑡 ′1) and𝜓 = ¬𝑃 (𝑥1,. . . , 𝑥𝑘 ,
𝑡2, 𝑡 ′2), (TI(𝑡1, 𝑡

′
1) \ TI(𝑡2, 𝑡

′
2) ≠ ∅) ∧(TI(𝑡2, 𝑡

′
2) \ TI(𝑡1, 𝑡

′
1) ≠ ∅).

Otherwise ¬pCon(Φ) is true.
– Φ has a total temporal consistency denoted by tCon(Φ) iff:

∀𝜙,𝜓 ∈ Cn(Φ) s.t. 𝜙 = 𝑃 (𝑥1,. . . , 𝑥𝑘 , 𝑡1, 𝑡 ′1) and 𝜓 = ¬𝑃 (𝑥1,. . . , 𝑥𝑘 ,
𝑡2, 𝑡 ′2), (TI(𝑡1, 𝑡

′
1) ∩ TI(𝑡2, 𝑡

′
2)=∅).

Otherwise ¬tCon(Φ) is true.
Temporal inconsistency:

– Φ has a partial temporal inconsistency denoted by pInc(Φ)
iff: ∃𝜙,𝜓 ∈ Cn(Φ) s.t. 𝜙=𝑃 (𝑥1,. . . , 𝑥𝑘 , 𝑡1, 𝑡 ′1),𝜓=¬𝑃 (𝑥1,. . . , 𝑥𝑘 , 𝑡2, 𝑡

′
2)

and TI(𝑡1, 𝑡 ′1) ∩ TI(𝑡2, 𝑡
′
2) ≠ ∅.

Otherwise ¬pInc(Φ) is true.
– Φ has a total temporal inconsistency denoted by tInc(Φ) iff:

∃𝜙,𝜓 ∈ Cn(Φ) s.t. 𝜙 = 𝑃 (𝑥1,. . . , 𝑥𝑘 , 𝑡1, 𝑡 ′1),𝜓 = ¬𝑃 (𝑥1,. . . , 𝑥𝑘 , 𝑡2, 𝑡 ′2)
and (TI(𝑡1, 𝑡 ′1) = TI(𝑡2, 𝑡 ′2)).

Otherwise ¬tInc(Φ) is true.
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Figure 1: Links between temporal consistency and inconsis-
tency relations.

Wenow examine the interaction properties between pCon, tCon, pInc
and tInc, such as complementarity, subsumption and inclusion.

Definition 10 (Complementarity & Subsumption). ∀Φ ⊆ TF-
FOL,∀ relation 𝑟1, 𝑟2 if:

– 𝑟1 (Φ) ↔ ¬𝑟2 (Φ) then 𝑟1 and 𝑟2 are complementary.
– 𝑟1 (Φ) → 𝑟2 (Φ) then 𝑟1 subsume 𝑟2.

The next two propositions show that firstly tCon and pInc are
complementary; secondly different subsumption relations exist
between the temporal consistencies.

Proposition 1. (Complementarity: temporal consistencies) For
any Φ ⊆ TF-FOL:
¬tCon(Φ) ↔ pInc(Φ) and tCon(Φ) ↔ ¬pInc(Φ).

Proposition 2. (Subsumption: temporal consisencies) For any
Φ ⊆ TF-FOL:
pCon(Φ) → ¬tInc(Φ), tInc(Φ) → ¬pCon(Φ),
¬pCon(Φ) → pInc(Φ), and ¬pInc(Φ) → pCon(Φ) .

In the following, for temporal consistency and inconsistency re-
lations, we denote by {𝑟 } = {Φ ⊆ TF-FOL | 𝑟 (Φ)} their set of formu-
lae sets respecting their condition, where 𝑟 ∈ {pCon, tCon, pInc, tInc,
¬pCon,¬tCon,¬pInc,¬tInc}.

Definition 11 (Inclusion). Let two relations of temporal consis-
tency 𝑟1, 𝑟2 ∈ {pCon, tCon, pInc, tInc,¬pCon, ¬tCon,¬pInc,
¬tInc}, 𝑟1 is considered included in 𝑟2 if: {𝑟1} ⊆ {𝑟2} iff
∀Φ ⊆ TF-FOL, 𝑟1 (Φ) → 𝑟2 (Φ).

Proposition 3. (Inclusion: temporal consistencies)
{tCon} = {¬pInc} ⊆ {pCon} ⊆ {¬tInc}
{tInc} ⊆ {¬pCon} ⊆ {pInc} = {¬tCon}

Some inclusions of temporal consistency relations may be de-
fined between the sets of formulae sets that respect them (see
Figure 1).

4.3 Temporal Parametric Semantics
To avoid defining several different semantics, we decompose the
construction of semantics and identify three steps. Thus, we pro-
pose the definition of Temporal Parametric Semantics, relying on
the combination of three functions: i) a validation function Δ of
instantiations integrating various consistency relations, ii) a select-
ing function 𝜎 able to modify the weight of the formulae of an
instantiation and iii) an aggregate function Θ returning the final
strength.

Definition 12 (Temporal Parametric Semantics). A temporal
parametric semantics is a tuple TPS = ⟨Δ,𝜎,Θ⟩ ∈ Sem, s.t.:

– Δ : TMLN∗ → {0, 1},
–𝜎 : TMLN∗ → ⋃+∞

𝑘=0 [0, 1]
𝑘 ,

– Θ :
⋃+∞

𝑘=0 [0, 1]
𝑘 → [0, +∞[,

For anyM ∈ TMLN, 𝐼 ⊆ MI(M), the strength of a temporal parametric
semantics TPS = ⟨Δ,𝜎,Θ⟩ is computed by:

TPS(𝐼 ) = Δ(𝐼 ) · Θ
(
𝜎 (𝐼 )

)
.

Once temporal consistency relations are defined, we may en-
hance semantics for MAP inference with temporal validation func-
tions. One TMLN instantiation can be valid or not according to
different criteria (i.e., accept an instantiation).

Definition 13 (Temporal Consistency Constraint
Function). Let M ∈ TMLN, an instantiation 𝐼 ⊆ MI(M) and 𝑥 ∈
{pCon, tCon, pInc, tInc}. We define Δ𝑥 : TMLN∗ → {0, 1}, a tempo-
ral consistency validation function according to 𝑥 , s.t.:

ΔpCon (𝐼 ) =
{

1 if pCon(TF(𝐼 ) )
0 if ¬pCon(TF(𝐼 ) ) ΔtCon (𝐼 ) =

{
1 if tCon(TF(𝐼 ) )
0 if ¬tCon(TF(𝐼 ) )

ΔpInc (𝐼 ) =
{

0 if pInc(TF(𝐼 ) )
1 if ¬pInc(TF(𝐼 ) ) ΔtInc (𝐼 ) =

{
0 if tInc(TF(𝐼 ) )
1 if ¬tInc(TF(𝐼 ) )

Corollary 1. For any 𝐼 ⊆ TMLN∗, ΔtCon (𝐼 ) = ΔpInc (𝐼 ).
Corollary 2. Let 𝑥 ∈ {pCon, tCon, pInc, tInc}, each Δ𝑥 is well-

behaved.

Then, we can order the value of the Δ𝑥 for any instantiation.

Proposition 4. LetM ∈ TMLN and Δ𝑥 a temporal consistency val-
idation function such that 𝑥 ∈ {pCon, tCon, pInc, tInc}. For any in-
stantiation 𝐼 ⊆ MI(M): ΔtCon (𝐼 ) = ΔpInc (𝐼 ) ≤ ΔpCon (𝐼 ) ≤ ΔtInc (𝐼 )

Theorem 1 shows that the strength of the temporal MAP in-
ferences with𝜎 and Θ on any TMLN is ranked according to the
temporal consistency validation functions Δ𝑥 .

Theorem 1. Let M ∈ TMLN, for any𝜎 and Θ, as:
– TPStCon = ⟨ΔtCon,𝜎,Θ⟩, TPSpInc = ⟨ΔpInc,𝜎,Θ⟩,
– TPSpCon = ⟨ΔpCon,𝜎,Θ⟩, TPStInc = ⟨ΔtInc,𝜎,Θ⟩.

Hence:
∀𝐼tCon ∈ map(M, TPStCon),∀𝐼pInc ∈ map(M, TPSpInc),
∀𝐼pCon ∈ map(M, TPSpCon),∀𝐼tInc ∈ map(M, TPStInc),
TPStCon (𝐼tCon) = TPSpInc (𝐼pInc) ≤ TPSpCon (𝐼pCon) ≤
TPStInc (𝐼tInc) .

We study different instances of the aggregate function, using
different sums. This type of parameters will determine the strength
of an instantiation, in various ways.

Definition 14 (Aggregate Functions). Let {𝑤1,. . . ,𝑤𝑛} such
that 𝑛 ∈ [0, +∞[ and ∀𝑖 ∈ [0, 𝑛],𝑤𝑖 ∈ [0, +∞[.
– Θ𝑠𝑢𝑚 (𝑤1,. . . ,𝑤𝑛) =

𝑛∑
𝑖=1

𝑤𝑖 , if 𝑛 = 0 then Θ𝑠𝑢𝑚 () = 0.

– Θ𝑠𝑢𝑚,𝛼 (𝑤1,. . . ,𝑤𝑛) =

(
𝑛∑
𝑖=1
(𝑤𝑖 )𝛼

) 1
𝛼

s.t. 𝛼 ≥ 1, if 𝑛 = 0 then

Θ𝑠𝑢𝑚,𝛼 () = 0.

Those aggregate functions target different kinds of semantics.
For instance,Θ𝑠𝑢𝑚,𝛼 emphasises strongweights for inference, while
Θ𝑠𝑢𝑚 considers weights without appriori.

We propose below a selective function𝜎 𝑖𝑑 which returns all the
weights and another function selecting weights with a threshold
(𝜎 𝑡ℎ𝑟𝑒𝑠ℎ,𝛼 ).
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TPS MAP Inferences Example of Conclusion
⟨ΔtCon,𝜎 𝑖𝑑 ,Θ𝑠𝑢𝑚⟩ {{𝐹6,𝐺𝑅11,𝐺𝑅12,𝐺𝑅2}} (¬𝑃𝐹 (𝑁𝑂, 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ), 0.8)
⟨ΔpCon,𝜎 𝑖𝑑 ,Θ𝑠𝑢𝑚⟩ {{𝐹4, 𝐹6,𝐺𝑅12,𝐺𝑅2}} (¬𝑃𝐹 (𝑁𝑂, 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ), 0.8)
⟨ΔtInc,𝜎 𝑖𝑑 ,Θ𝑠𝑢𝑚⟩ {{𝐹4, 𝐹5, 𝐹6,𝐺𝑅11,𝐺𝑅12}} (𝑃𝐹 (𝑁𝑂, 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ), 0.5)
⟨ΔtCon,𝜎 𝑖𝑑 ,Θ𝑠𝑢𝑚,2⟩ {{𝐹6,𝐺𝑅11,𝐺𝑅12,𝐺𝑅2}} (¬𝑃𝐹 (𝑁𝑂, 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ), 0.8)
⟨ΔpCon,𝜎 𝑖𝑑 ,Θ𝑠𝑢𝑚,2⟩ {{𝐹4, 𝐹6,𝐺𝑅12,𝐺𝑅2}} (¬𝑃𝐹 (𝑁𝑂, 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ), 0.8)
⟨ΔtInc,𝜎 𝑖𝑑 ,Θ𝑠𝑢𝑚,2⟩ {{𝐹4, 𝐹5, 𝐹6,𝐺𝑅2}, (¬𝑃𝐹 (𝑁𝑂, 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ), 0.8)

{𝐹5, 𝐹6,𝐺𝑅11,𝐺𝑅2}}
Table 3:TPS example.To be short in each instantiation ofMAP
inferences we omit 𝐹1, 𝐹2, 𝐹3 which are in all instantiations
and we abbreviate PeasantFamily by PF.
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Figure 2: A TMLN property graph representation.

Definition 15 (Selective Functions). LetM ∈ TMLN,
{(𝜙1,𝑤1),. . . , (𝜙𝑛,𝑤𝑛)} ⊆ MI(M):

–𝜎 𝑖𝑑 ({(𝜙1,𝑤1),. . . , (𝜙𝑛,𝑤𝑛)}) = (𝑤1,. . . ,𝑤𝑛)
–𝜎 𝑡ℎ𝑟𝑒𝑠ℎ,𝛼 ({(𝜙1,𝑤1),. . . , (𝜙𝑛,𝑤𝑛)}) =

− − −(max(𝑤1 − 𝛼, 0),. . . , max(𝑤𝑛 − 𝛼, 0)) s.t. 𝛼 ∈ [0, +∞[

In Chekol et al. [6], the MAP inference uses a semantics working
on Herbrand models (with temporal formulae, included in TF-FOL)
and is built from uncertain (𝑤 < 1), certain (𝑤 = 1010) temporal
facts and TMLN certain rules.

This semantics also determines the temporal inconsistency by
a classical consistency (if there is no formula 𝜑 such that Φ ⊢
𝜑 and Φ ⊢ ¬𝜑) and by summing all the weights of facts in the
instantiation. Therefore, for TMLNs without any uncertain rule,
the MAP inference will return the same instantiations as ours,
using the temporal parametric semantics ⟨ΔtInc,𝜎 𝑖𝑑 ,Θ𝑠𝑢𝑚⟩. Our
Temporal MAP inference generalises their work.

4.4 Example of Reasoning on TMLN
Example 2 (Continued).

In our running theoretical example, let us focus on the temporal
consistency parameters and the different aggregations. Then, we
are showing in experiments the interest of the selecting function.

Table 3 illustrates different TPS (left column), the results of their
MAP inferences (middle column) i.e., the most probable coherent
worlds (according to the semantics), and (right column) an example
of consistent inference deduced in the MAPs about whether Nicolas
Oresme comes from a peasant family or not (with its associated
probability).

In this example, information that worth processing (impacted
by different strategies, i.e., TPS) are 𝐹4, 𝐹5, 𝐹6,𝐺𝑅11,𝐺𝑅12 and𝐺𝑅2.
In fact, the issue is to know if they are consistent or not, and if not
which ones to choose. To simplify parameters explanation and TPS

strategies let’s divide the study into two subgroups of information
(while all information is kept together during the MAP inference).

First, to illustrate temporal parameterisations between 𝐹4, 𝐹5, 𝐹6,
we observe that 𝐹4 and 𝐹5 have an opposite polarity to 𝐹6. Depend-
ing on the choice of temporal consistency, some partially contra-
dictory information is considered valid, which provides different
consistent sets.

Second, let us analyse aggregations to determine which set of
information is more likely to be chosen between 𝐺𝑅11, 𝐺𝑅12 and
𝐺𝑅2. By taking Θ𝑠𝑢𝑚 , then Θ𝑠𝑢𝑚 (𝐺𝑅11,𝐺𝑅12) > Θ𝑠𝑢𝑚 (𝐺𝑅2) (0.4+
0.5 > 0.8). While more probable information should have more
impact than sets of less probable ones. Thus, using Θ𝑠𝑢𝑚,2 we get
Θ𝑠𝑢𝑚,2 (𝐺𝑅11,𝐺𝑅12) < Θ𝑠𝑢𝑚,2 (𝐺𝑅2) ((0.42 + 0.52)

1
2 = 0.64 < 0.8).

Even if 𝑃𝑒𝑎𝑠𝑎𝑛𝑡𝐹𝑎𝑚𝑖𝑙𝑦 (𝑁𝑂, 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ) has a weight of 0.5 and
its negation 0.8, and we have more inference on the negation,
we cannot conclude that ¬𝑃𝑒𝑎𝑠𝑎𝑛𝑡𝐹𝑎𝑚𝑖𝑙𝑦 (𝑁𝑂, 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ) is more
likely. For instance, ⟨ΔtInc,𝜎 𝑖𝑑 ,Θ𝑠𝑢𝑚⟩, corresponding to Chekol’s
semantics, would advocate that Nicole Oresme was a Peasant while
the one with ΔpCon would infer the opposite. The parametric choice
of our approach allows historians to decide which inference better
corresponds to their own reasoning.

5 TEMPORAL MAP INFERENCEWITH
NEOMAPY

In literature, MAP inference computation relies on an ILP solv-
ing process which checks ground facts that violate rules and build
solutions according to possible solutions with TeCoRe [8]. This
model finding process is optimised by both aggregating ILP shar-
ing common predicates and parallel solving. The complexity of
those approaches highly depends on the number of aggregated
violating TF.

We propose NeoMaPy a totally different approach based on con-
flicts produced by constraints. It relies on building compatible
worlds instead of building iteratively valid worlds. We extract
a conflict graph between facts, based on rules as in [5] but with
weighted nodes. Thus, the particularity of the MAP inference is to
find conflict-free graphs by maximising node weights and not by
minimising conflict pruning [16].

5.1 Graph of Conflicts
For conflict extraction, we represent a TMLN instantiation 𝐼 by a
Labeled Property Graph [1, 10], where constants and predicates
becomes Concept nodes. Ground formulae combining those concept
nodes are represented as TF nodes, with temporal predicates and
weights as properties. Rules are expressed as queries on the graph of
interactions between TF nodes based on their properties, constants
and predicates, producing conflict edges between TF nodes, labelled
with a conflict type. Figure 2 illustrates an instantiation of a TMLN
where concept (blue) and TF (red) nodes are represented. The node
“NO” is the subject (:s), “Studied” is the predicate node (:p) and
“CoN ” is the object (:o), for the TF 𝐹4, 𝐹5, 𝐹6. The three TF, in red,
correspond to ground information from Ex. 2, with corresponding
time frames and polarities. Applying semantics corresponds to
a pattern matching query on the graph, searching for conflicts
between TF nodes. Each constraint (i.e., temporal consistency) is a
pattern starting with a common Concept node (𝑠, 𝑜, 𝑝).
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For our example, we start with the node “NO”, for which we
find several TFs with opposite polarities while sharing the same
concepts (object and predicate). Since their time frames ([1340, 1354]
and [1655, 1360] against [1353, 1370]) are not disjoint, we can infer
pCon and pInc conflicts. The type of conflict becomes a property
on the extracted conflict link.

After applying all constraints (pattern matching), all conflicts
are identified. For a given parametric semantics, we provide for
each TF node the list of conflictual nodes.

5.2 MAP inference computation
Once the set of conflictual nodes has been obtained, the MAP infer-
ence is computed in two steps. We first pre-process our data into a
set of connected components (i.e., if there is no path between two
nodes, they are not connected). Then, we infer the MAP with our
MaPy algorithm (Alg. 1).
MaPy works as follows: for each node in a dictionary of conflict-

ual nodes (i.e., a connected component), we create step-by-step the
list of possible solutions. A solution has three elements: 1) a list of
“solution” nodes, 2) a list of conflict nodes with the solution and 3)
the solution’s weight. The solution is initialised by the first node
(line 1). For each node (line 2), we search an existing solution for
a compatible node (line 4) for which the node is merged to the
solution (line 6). Otherwise, we extract the maximum compatible
sub-solution with this node and merge them together as a new
solution (line 8).

For optimisation, we firstly remove any solution that can be in-
cluded in previous one (line 9). Secondly, we look for the maximum
potential solution starting from the best current one and naively
add the maximum of remaining nodes leading to a maximum po-
tential solution (MPS, line 10). Thirdly, we augment each solution
with all non-conflictual nodes with the base solution (worst case)
and, when it is lower than MPS, we delete wrong solutions (line 11).
Finally, we keep the top-𝑘 best solutions (𝑘=50 in experiments) to
avoid useless ones (lines 12-13). After processing all the nodes, each
solution is checked for potential missed compatible nodes (line 14).
Then, the best solution is kept among the top-𝑘 (line 15).

6 EXPERIMENTS
Our approach has been implemented in two distinct parts: 1) build-
ing and extracting the graph of conflicts in Neo4j1, 2) processing
the MAP inference in MaPy (in Python). The source code is available
on GitHub2 and for more information on the tool, a demonstration
has been published [12].

6.1 The MAP Inference Extractor
Conflicts extraction from TF nodes has been implemented over
Neo4j. The graph is composed of Concept and TF nodes (see Sec-
tion 5.1) with (𝑠, 𝑜, 𝑝) relationships. Rules are applied to instantiate
ground rules as Cypher queries.

The rule 𝑅2 (Table 1) is illustrated below. It searches for a pattern
composed of a subject “s” (:s) connected to the“LivePeriod” predi-
cate (:p & livp) from a first TF (tf1) and the “Philosopher” predicate
(:p & phil) from the second TF (tf2). For each pattern match on

1https://neo4j.com
2https://github.com/cedric-cnam/NeoMaPy_Daphne

Algorithm 1 MaPy(Dico, k)
Input: Dico = {IdNd: [W_Nd, [ConfNd, . . . ]], . . . }, 𝑘 ∈ N
Output: Best_Sol = [{Nd, . . . }, {ConfNd, . . . }, W_Sol]

1: List_Sol = [{Dico[0]}, {Dico[0][1]}, Dico[0][0]];
2: for nd ∈ Dico do
3: for sol ∈ List_Sol do
4: (new_sol,compat) = Compat_Merge(nd,sol);
5: if compat then
6: sol.update(nd);
7: else
8: List_Sol.add(new_sol);
9: List_Sol.delete_Include();
10: Max_Potential_Sol = search_MPS(List_Sol);
11: List_Sol.delete_Wrong_Solutions(Max_Potential_Sol);
12: if len(List_Sol) > k then
13: List_Sol = Top_MAP(List_Sol, k);
14: List_Sol.add_Missing_Nodes(Dico);
15: Best_Sol = Top_MAP(List_Sol, 1);

the graph, it instantiates a new TF (new_tf ) with the correspond-
ing time frame (𝑇𝑚𝑖𝑛,𝑇𝑚𝑎𝑥 ) with a negative polarity (as stated in
rule 𝑅2). This new_tf is the connected to its subject pers, predicate
PeasantFamily and premises (tf1 and tf2).
MATCH (phil:Concept{ID:"Philosopher"})<-[:p]-(tf1:TF)-[:s]->(pers),

(livp:Concept{ID:"LivePeriod"}) <-[:p]-(tf2:TF)-[:s]->(pers),
(mage:Concept{ID:"MA"}) <-[:o]-(tf2)

MERGE (new_tf:TF{start:Tmin,end:Tmax,polarity:false})-[:s]->(pers)
MERGE (mage)<-[:o]-(new_tf)-[:p]->(p4:Concept{ID:"PeasantFamily"})
MERGE (tf1) -[:rule{ID:"R2"}]-> (new_tf) <-[:rule{ID:"R2"}]-(tf2);

Then, to provide for each TF its list of conflicts required by
Alg. 1 (Dico), each constraint from Δ is checked on the graph as a
Cypher query and materialised as conflicts between incompatible
TFs. The Cypher query below illustrates the generation of conflicts
for the constraint pCon. If𝑇𝐹1 and𝑇𝐹2 share same concepts (𝑠, 𝑜, 𝑝)
with opposite polarities and a time frames intersection, it produces
a “pCon” conflict between tf1 and tf2. For optimisation purposes,
concept IDs (𝑠, 𝑜, 𝑝) are repeated in TF nodes (e.g., tf1.p=tf2.p). Every
conflict and inference rule relationship is typed.
MATCH (tf1:TF) -[:s]-> (:Concept) <-[:s]- (tf2:TF)
WHERE tf1.p=tf2.p and tf1.o=tf2.o and tf1.polarity <>
tf2.polarity AND (tf1.start < tf2.start and tf2.start < tf1.end

AND tf1.end < tf2.end)
MERGE (tf1)-[c:conflict{type:"pCon"}]-(tf2);

The final graph may be used to explain the MAP inference. More-
over, for inference a parametric semantics corresponds to a Cypher
query that extracts corresponding conflicts (temporal consistency),
rules (if a premise is ignored, so does the inferred TF), thresholds
(filter on weights), etc.

6.2 Performances
Experiments have been computed on an Intel Xeon-E 2136 - 6c/12t -
3.3 GHz/4.5 GHzwith 64GB RAM.Neo4j v5.5 has been containerised
in Docker with 4 cores and 60GB RAM.

As stated, Chekol et al. [8] compute the MAP inference with
a parallelised ILP solving process with TeCoRe [8] over n-RockIt.
We compare our approach with them using their dataset [6]. It
is composed of different datasets from 5k to 200k predicates (TF)

https://neo4j.com
https://github.com/cedric-cnam/NeoMaPy_Daphne
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Figure 3: MAP computation time wrt. number of TF (0%
false). A gray bar means that computation timed out.
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Figure 4: MAP Inference computation wrt. injected conflicts.

Avg Rate of injected false Number of TFs
10% 25% 50% 75% 100% 5k 10k 25k 50k 75k 100k 200k

n-rockit Nb false 63.2% 68.2% 68.2% 56.4% 60.3% 59.0% 65.9% 69.2% 61.6% 57.0% 43.2% 64.8% N/A

𝜎𝑡ℎ,0
top-50

Nb false
MAP gain

62.8%
+2.31%

67.3%
+2.68%

60.2%
+4.08%

56.9%
+0.54%

55.8%
+5.46%

54.7%
+1.12%

64.1%
+3.07%

68.2%
+3.95%

61.5%
+0.21%

54.8%
+3.58%

53.5%
+0.87%

54.4%
+2.02%

57.2%
N/A

𝜎𝑡ℎ,0.05
top-50

Nb false
MAP gain

70.1%
+1.47%

73.7%
+1.93%

71.5%
+4.39%

66.8%
-0.52%

65.9%
+3.97%

67.4%
-0.3%

75.8%
+1.54%

75.4%
+2.98%

70.3%
-0.32%

65.2%
+2.89%

64.6%
+0.32%

65.1%
+1.93%

65.6%
N/A

𝜎𝑡ℎ,0.1
top-50

Nb false
MAP gain

78.5%
-0.22%

81.0%
+1.36%

79.4%
+3.27%

75.9%
-2.77%

75.5%
+0.33%

76.5%
-4.6%

83.0%
-0.2%

81.8%
+1.04%

78.7%
-2.21%

74.9%
+0.7%

74.3%
-0.94%

74.8%
+1.73%

75.1%
N/A

𝜎𝑡ℎ,0.05
top-5

Nb false
MAP gain

71.0%
+0.46%

74.6%
+1.09%

72.6%
+3.26%

67.8%
-1.71%

67.1%
+2.47%

68.4%
-1.59%

76.5%
+0.36%

76.3%
+1.57%

71.3%
-1.04%

66.6%
+2%

65.7%
-0.36%

66.4%
+1.14%

66.0%
N/A

Table 4: MAP Inference quality (TMLN weight & injected false TF) for MaPy (top-k) TPS ⟨ΔtInc,𝜎 𝑡ℎ𝑟𝑒𝑠ℎ,𝑥 ,Θ𝑠𝑢𝑚⟩.

based onwikidata, after adding false predicates (from +25% to +100%
more). For a fair comparison, we only focus on a TMLN without
polarities and aMAP inference without parametric semantics, while
our implementation would allow it.

6.2.1 Efficiency. Figure 3 shows time efficiency of n-RockIt vs
NeoMaPy. We differentiate the preprocessing (import/neo4j) from
the MAP inference computation (heuristic/MaPy). We can see that
n-RockIt spends most of the time to search for the MAP inference
while NeoMaPy spends more time creating the conflict graph for
small datasets while more time in computing the MAP Inference
for bigger graphs (200k). It is worth noting that processing graphs
bigger than 100k predicates on n-RockIt led to a timeout (after 1
hour delay - graphs > 100k). Thanks to our optimistic strategy and
heuristic of conflict resolutions, our solution outperforms n-RockIt.

Figure 4 shows the computation time of NeoMaPy on graphs
from 5k to 200k predicates after adding false predicates (from +0%
to +100%). Those false predicates produce each time at least one
conflict with existing nodes. For example, the graph with 200k
predicates with +100% is a graph with 400k predicates and 528,227
conflicts. It is worth noting that our approach keeps a polynomial
computation time (shown in log scale) depending on the total num-
ber of predicates (including injected false) and conflicts.

6.2.2 MAP Inference Quality. We now study the quality measure-
ment of the MAP Inference (Table 4). For each dataset we computed
the solutions’ weight (chosen TMLN) and the number of injected
false detected. We compare our solutions only when n-Rockit did
not end with a timeout. NeoMaPy runs were computed with various
TPS (𝜎 𝑡ℎ𝑟𝑒𝑠ℎ,𝑥 with x from 0 to 0.1) and top-k for theMaPy heuris-
tic (5 & 50). We compare the solutions’ weight with those provided
by n-Rockit and the TMLNs’ weight gain with NeoMaPy. We can
see that we obtain better solutions with a basic strategy (𝜎 𝑡ℎ𝑟𝑒𝑠ℎ,0,

top-50) with +2.31% on average. By filtering weights on the TMLN,
we reduce the global weight of the TMLN while we keep a positive
gain for𝜎 𝑡ℎ𝑟𝑒𝑠ℎ,0.05.

According to detected false TFs, we can see that on average the
basic strategy does not perform well (62.8%). On the other hand,
by applying a threshold on weights we remove conflict nodes with
few impacts and keep the heuristic on more important nodes. Thus,
the ratio of detected false TF grows rapidly up (up to 78.5% with
𝜎 𝑡ℎ𝑟𝑒𝑠ℎ,0.1). The top-5 has also an impact since the heuristic focuses
on TFs that contribute more rapidly to the MAP. Consequently, the
TPS𝜎 𝑡ℎ𝑟𝑒𝑠ℎ,0.05 with a top-5 provides a good compromise between
TMLN’s weight (+0.46%) and detected false (71%).

Eventually, we show the evolution of false detection and the
MAP inference gain (compared to n-Rockit) wrt. the number of
injected false and the number of initial predicates. MaPy detects
more false TFs from 10% to 25% of injection as well as small graphs
(25k) while converging quickly (75% with𝜎 𝑡ℎ𝑟𝑒𝑠ℎ,0.1). According
to the MAP inference gain, neither injection nor graph size have a
significant impact on the gain for TMLN’s weights.

Interestingly, our parametric MAP Inference enables obtaining
MAP inferences of better quality.

Notice that our TMLN worlds rely on grounded facts and not
on all possible constants instantiation. However, the comparison is
sound since our dataset does not contain any ungrounded formula
(with variables), the latters are validated with given constraints.

7 CONCLUSION
Reasoning on KGs has recently been approached with MLNs, to find
the most probable state of the world. However, they were limited
to a strict temporal inconsistency. In this article, we propose:
– to extend MLN by TMLN with MS-FOL which is capable of com-
bining temporal facts and rules;
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– to extend MAP inference semantics to temporal data;
– a new temporal parametric semantics (TPS) which offers flexibility
and explainability, to tailor semantics reasoning to one’s needs;
– a new NeoMaPy approach that outperforms the best existing one
(n-RockIt), on both efficiency and quality of the MAP Inference
using various TPS.

For future work, we first wish to extend our reasoning model
with a learning system to automatically obtain weights on TMLN
information, and then test them in practice for goal recognition or
other historical research problems. Secondly, we want to extend this
work to existential rules, to capture more real data. Thirdly, some
relationships between formulae in TMLNs are not yet exploited, and
could be represented with argumentation graphs (e.g., the notion of
support [9] or similarity between pieces of information [2, 3]), to
enhance the weight of inferred knowledge. Eventually, we should
investigate more properties of the parametrisation functions to
analyse their specific behaviours and adequate strategies.

8 APPENDIX
Proposition 1. Let Φ ⊆ TF-FOL such that tCon(Φ), i.e. from

Definition 9: ∀𝜙,𝜓 ∈ Cn(Φ) s.t. 𝜙 = 𝑃 (𝑥1, · · · , 𝑥𝑘 , 𝑡1, 𝑡 ′1) and 𝜓 =

¬𝑃 (𝑥1, · · · , 𝑥𝑘 , 𝑡2, 𝑡 ′2), (TI(𝑡1, 𝑡
′
1) ∩ TI(𝑡2, 𝑡

′
2) = ∅).

Then its negation ¬tCon(Φ) is equivalent to: ¬(¬∃𝜙,𝜓 ∈ Cn(Φ)
s.t. 𝜙 = 𝑃 (𝑥1, · · · , 𝑥𝑘 , 𝑡1, 𝑡 ′1) and 𝜓 = ¬𝑃 (𝑥1, · · · , 𝑥𝑘 , 𝑡2, 𝑡 ′2) and
(TI(𝑡1, 𝑡 ′1) ∩ TI(𝑡2, 𝑡

′
2) ≠ ∅)).

Hence¬tCon(Φ) is equivalent to pInc(Φ):∃𝜙,𝜓 ∈ Cn(Φ) s.t. 𝜙 =

𝑃 (𝑥1, · · · , 𝑥𝑘 , 𝑡1, 𝑡 ′1) and 𝜓 = ¬𝑃 (𝑥1, · · · , 𝑥𝑘 , 𝑡2, 𝑡 ′2) and (TI(𝑡1, 𝑡
′
1)∩

TI(𝑡2, 𝑡 ′2) ≠ ∅).
Moreover its negation, ¬pInc(Φ) is equivalent to: ¬(¬∀𝜙,𝜓 ∈

Cn(Φ) s.t. 𝜙 = 𝑃 (𝑥1, · · · , 𝑥𝑘 , 𝑡1, 𝑡 ′1) and 𝜓 = ¬𝑃 (𝑥1, · · · , 𝑥𝑘 , 𝑡2, 𝑡 ′2),
(TI(𝑡1, 𝑡 ′1) ∩ TI(𝑡2, 𝑡

′
2) = ∅)). Therefore ¬pInc(Φ) is equivalent to

tCon(Φ). □

Proposition 2. Let Φ ⊆ TF-FOL, from Definition 9:
(1) pCon(Φ) → ¬tInc(Φ):
• ¬tInc(Φ) iff,¬∃𝜙,𝜓 ∈ Cn(Φ) s.t. 𝜙 = 𝑃 (𝑥1, · · · , 𝑥𝑘 , 𝑡1, 𝑡 ′1),
𝜓 = ¬𝑃 (𝑥1, · · · , 𝑥𝑘 , 𝑡2, 𝑡 ′2) and (TI(𝑡1, 𝑡

′
1) = TI(𝑡2, 𝑡 ′2))

• pCon(Φ) iff∀𝜙,𝜓 ∈ Cn(Φ) s.t. 𝜙 = 𝑃 (𝑥1, · · · , 𝑥𝑘 , 𝑡1, 𝑡 ′1) and
𝜓 = ¬𝑃 (𝑥1, · · · , 𝑥𝑘 , 𝑡2, 𝑡 ′2), (TI(𝑡1, 𝑡

′
1) \ TI(𝑡2, 𝑡

′
2) ≠ ∅) ∧

(TI(𝑡2, 𝑡 ′2) \ TI(𝑡1, 𝑡 ′1) ≠ ∅) which is equivalent to:
¬∃𝜙,𝜓 ∈ Cn(Φ) s.t. 𝜙 = 𝑃 (𝑥1, · · · , 𝑥𝑘 , 𝑡1, 𝑡 ′1) and
𝜓 = ¬𝑃 (𝑥1, · · · , 𝑥𝑘 , 𝑡2, 𝑡 ′2) and (TI(𝑡1, 𝑡

′
1) \ TI(𝑡2, 𝑡

′
2) =

∅) ∨ (TI(𝑡2, 𝑡 ′2) \ TI(𝑡1, 𝑡
′
1) = ∅)

• If there not exists TI(𝑡1, 𝑡 ′1) \ TI(𝑡2, 𝑡
′
2) = ∅ or TI(𝑡2, 𝑡

′
2) \

TI(𝑡1, 𝑡 ′1) = ∅ then there not exists TI(𝑡1, 𝑡 ′1) \ TI(𝑡2, 𝑡
′
2) =

∅ and TI(𝑡2, 𝑡 ′2) \ TI(𝑡1, 𝑡
′
1) = ∅ (i.e. TI(𝑡1, 𝑡

′
1) = TI(𝑡2, 𝑡 ′2)),

therefore pCon(Φ) → ¬tInc(Φ).
(2) tInc(Φ) → ¬pCon(Φ):
• ¬pCon(Φ) iff¬(¬∃𝜙,𝜓 ∈ Cn(Φ) s.t. 𝜙 = 𝑃 (𝑥1, · · · , 𝑥𝑘 , 𝑡1, 𝑡 ′1)

and 𝜓 = ¬𝑃 (𝑥1, · · · , 𝑥𝑘 , 𝑡2, 𝑡 ′2) and (TI(𝑡1, 𝑡
′
1)\TI(𝑡2, 𝑡

′
2) =

∅)∨ (TI(𝑡2, 𝑡 ′2) \TI(𝑡1, 𝑡
′
1) = ∅)) i.e., ∃𝜙,𝜓 ∈ Cn(Φ) s.t. 𝜙 =

𝑃 (𝑥1, · · · , 𝑥𝑘 , 𝑡1, 𝑡 ′1) and 𝜓 = ¬𝑃 (𝑥1, · · · , 𝑥𝑘 , 𝑡2, 𝑡 ′2) and
(TI(𝑡1, 𝑡 ′1) \ TI(𝑡2, 𝑡

′
2) = ∅) ∨ (TI(𝑡2, 𝑡

′
2) \ TI(𝑡1, 𝑡

′
1) = ∅)

• tInc(Φ) iff ∃𝜙,𝜓 ∈ Cn(Φ) s.t. 𝜙 = 𝑃 (𝑥1, · · · , 𝑥𝑘 , 𝑡1, 𝑡 ′1),
𝜓 = ¬𝑃 (𝑥1, · · · , 𝑥𝑘 , 𝑡2, 𝑡 ′2) and (TI(𝑡1, 𝑡

′
1) = TI(𝑡2, 𝑡 ′2))

• If there exists TI(𝑡1, 𝑡 ′1) \ TI(𝑡2, 𝑡
′
2) = ∅ and TI(𝑡2, 𝑡 ′2) \

TI(𝑡1, 𝑡 ′1) = ∅ (TI(𝑡1, 𝑡
′
1) = TI(𝑡2, 𝑡 ′2)), then there exists

TI(𝑡1, 𝑡 ′1)\TI(𝑡2, 𝑡
′
2) = ∅ or TI(𝑡2, 𝑡

′
2)\TI(𝑡1, 𝑡

′
1) = ∅, there-

fore tInc(Φ) → ¬pCon(Φ).
(3) ¬pCon(Φ) → pInc(Φ):
• pInc(Φ) iff ∃𝜙,𝜓 ∈ Cn(Φ) s.t. 𝜙 = 𝑃 (𝑥1, · · · , 𝑥𝑘 , 𝑡1, 𝑡 ′1),
𝜓 = ¬𝑃 (𝑥1, · · · , 𝑥𝑘 , 𝑡2, 𝑡 ′2) and (TI(𝑡1, 𝑡

′
1) ∩ TI(𝑡2, 𝑡

′
2) ≠ ∅)

• If there exists TI(𝑡1, 𝑡 ′1) \ TI(𝑡2, 𝑡
′
2) = ∅ or TI(𝑡2, 𝑡 ′2) \

TI(𝑡1, 𝑡 ′1) = ∅ then there exists TI(𝑡1, 𝑡 ′1) ∩ TI(𝑡2, 𝑡 ′2) ≠ ∅,
therefore ¬pCon(Φ) → pInc(Φ).

(4) ¬pInc(Φ) → pCon(Φ):
• ¬pInc(Φ) is equivalent to: ¬(¬∀𝜙,𝜓 ∈ Cn(Φ) s.t.
𝜙 = 𝑃 (𝑥1, · · · , 𝑥𝑘 , 𝑡1, 𝑡 ′1) and 𝜓 = ¬𝑃 (𝑥1, · · · , 𝑥𝑘 , 𝑡2, 𝑡 ′2),
(TI(𝑡1, 𝑡 ′1) ∩ TI(𝑡2, 𝑡

′
2) = ∅)

• Therefore, for any TI(𝑡1, 𝑡 ′1), TI(𝑡2, 𝑡
′
2), if TI(𝑡1, 𝑡 ′1) ∩

TI(𝑡2, 𝑡 ′2) = ∅ then TI(𝑡1, 𝑡
′
1)\TI(𝑡2, 𝑡

′
2) ≠ ∅ and TI(𝑡2, 𝑡 ′2)\

TI(𝑡1, 𝑡 ′1) ≠ ∅, therefore ¬pInc(Φ) → pCon(Φ).
□

Proposition 3. From Proposition 1 and 2, we know that for any
Φ ⊆ TF-FOL:
tCon(Φ) ↔ ¬pInc(Φ) → pCon(Φ) → ¬tInc(Φ)
tInc→ ¬pCon(Φ) → pInc(Φ) ↔ ¬tCon(Φ)

Therefore from Definition 11:
{tCon} = {¬pInc} ⊆ {pCon} ⊆ {¬tInc}
{tInc} ⊆ {¬pCon} ⊆ {pInc} = {¬tCon} □

Proposition 4. From Definition 11, let two relations of tem-
poral consistency 𝑟1, 𝑟2 ∈ {pCon, tCon, pInc, tInc,¬pCon,¬tCon,
¬pInc,¬tInc}, 𝑟1 is considered included in 𝑟2 if: {𝑟1} ⊆ {𝑟2} iff
∀Φ ⊆ TS − FOL, 𝑟1 (Φ) → 𝑟2 (Φ).

From Proposition 3: {tCon} = {¬pInc} ⊆ {pCon} ⊆ {¬tInc}
and {tInc} ⊆ {¬pCon} ⊆ {pInc} = {¬tCon}.

Hence, for any set of formulae Φ ⊆ TF-FOL: (tCon(Φ) ↔
¬pInc(Φ)) → ¬pInc(Φ) → pCon(Φ) → ¬tInc(Φ).

From Definition 13, using the case equal to 1 and given that
(tCon(Φ) ↔ ¬pInc(Φ)) → ¬pInc(Φ) → pCon(Φ) → ¬tInc(Φ),
for any instantiation 𝐼 ⊆ MI(M):ΔtCon (𝐼 ) = ΔpInc (𝐼 ) ≤ ΔpCon (𝐼 ) ≤
ΔtInc (𝐼 ). □

Theorem 1. Let 𝑥 ∈ {pCon, tCon, pInc, tInc}, M ∈ TMLN and
∀𝐼 ⊆ MI(M), we know from Proposition 4 that:
ΔtCon (𝐼 ) = ΔpInc (𝐼 ) ≤ ΔpCon (𝐼 ) ≤ ΔtInc (𝐼 ).

From Definition 12, a temporal parametric semantics is defined
as follows: TPS(𝐼 ) = Δ(𝐼 ) · Θ

(
𝜎 (𝐼 )

)
.

Consequently, Δ(𝐼 ) is a coefficient of the combination of𝜎 and
Θ. Thus, for any 𝐼 ,𝜎 and Θ, we may order the results according to
the Δ(𝐼 ) coefficient.

Finally, given that the MAP Inference returns the instantiation
with the maximum strength, all strengths of the MAP inferences
are equal. Therefore, if we denote by:
• TPStCon = ⟨ΔtCon,𝜎,Θ⟩, TPSpInc = ⟨ΔpInc,𝜎,Θ⟩,
• TPSpCon = ⟨ΔpCon,𝜎,Θ⟩, TPStInc = ⟨ΔtInc,𝜎,Θ⟩.

Hence: ∀𝐼tCon ∈ map(M, TPStCon), ∀𝐼pInc ∈ map(M, TPSpInc),
∀𝐼pCon ∈ map(M, TPSpCon), ∀𝐼tInc ∈ map(M, TPStInc),
TPStCon (𝐼tCon) = TPSpInc (𝐼pInc) ≤ TPSpCon (𝐼pCon) ≤ TPStInc (𝐼tInc).

□
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