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ABSTRACT
This paper presents a general formalism for Recommender
Systems based on Social Network Analysis. After intro-
ducing the classical categories of recommender systems, we
present our Social Filtering formalism and show that it ex-
tends association rules, classical Collaborative Filtering and
Social Recommendation, while providing additional possibil-
ities. This allows us to survey the literature and illustrate
the versatility of our approach on various publicly available
datasets, comparing our results with the literature.
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1. INTRODUCTION
Recommender Systems (RSs) help users or groups of users
deal with information overload by proposing to them items
suited to their interests. The history of RSs started in the
late 1990s with work by the GroupLens team at Univer-
sity of Minnesota [18] to recommend news, and by Movie-
Lens in 1996 to recommend movies, which demonstrated
that automated recommendations were very well received by
users. Then Amazon, which had been incorporated in 1994,
published its patent in 2001 and has been serving recom-
mendations ever since, acting as a de facto reference show-
case for the efficiency of RSs [33]. The Netflix competition
(2006-2009) attracted over 41,000 participating teams [6]
and turned RS into a hot topic among researchers.

The first papers on collaborative filtering showed how to
use the opinions of similar users to recommend items to
the active user [1]. Since then, research in RSs has become
very active (see for example a recent RS survey including
more than 250 references [8]) and RSs have been successfully
used in many industry sectors to recommend items: movies
(Netflix [6], MovieLens [41]), products (Amazon.com [33],
La Bôıte à Outils [47]), songs [3], jobs to Facebook users
(Work4Labs.com [16]), books, friends, banners or content
on a social site (Skyrock.com [44]) etc.

RSs exploit various sources of information: about users (their

demographics), about products (their features) and about
user interactions with the products [8; 25], either explicit
(rating, satisfaction) or implicit (product purchased, book
read, song heard, content clicked etc.) More recently, So-
cial networks and social media (blogs, social tagging sites,
etc) have emerged and become very active. A social site
will allow users to construct profiles (public or semi-public),
to share connections with other users and to view and tra-
verse lists of connections made by others in the system [10].
Authors [8; 51; 56; 57] have thus proposed to also include
information from social media (Facebook, Twitter, ...) be-
cause social relations obviously influence users’ behaviors.
There are two visions for social recommendation [56]:

• The narrow definition only considers RSs which com-
bine users’ data and data from their social relation-
ships. It is the one most used in the literature. In this
case, we need an explicit social network such as, for ex-
ample, Facebook, to provide the social relationships;

• In a broader definition, a social RS is any recommen-
dation system targeting social media (blogs, social tag-
ging, video sharing, etc.) or even ecommerce. In this
case, we might not have an explicit social network, but
could still derive an implicit social network.

RSs implementations are based on various techniques [1]:
content-based, collaborative filtering (both memory- and
model-based), hybrid or social [56]. Performances are eval-
uated through various criteria [52].

In this paper, we propose a Social Filtering formalism (SF),
based on Social Network Analysis (SNA), which allows us to
describe, within the same formalism, both association rules,
traditional Collaborative Filtering (CF) and Social Recom-
mendation (SR), while providing additional ways to imple-
ment a RS, thus producing novel RSs.

The paper can thus be read as a survey on RSs, with ex-
periments illustrating the various RSs presented. We have
not tried, in this paper, to optimize hyper-parameters, but
rather intended to present a wide repertoire of RSs tested in
a uniform setting to allow for comparisons which are usually
hard to make since, in the literature, each paper has its own
settings and hyper-parameters choices.

The paper is organized as follows: in section 2, we introduce
general concepts and notations, and we review traditional
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techniques in section 3. In section 4, we introduce our So-
cial Filtering formalism and show in section 5 how it relates
to conventional approaches. In section 6, we introduce eval-
uation metrics and various representative datasets. In sec-
tion 7, we present extensive experimental results to illustrate
the various RSs presented in the paper: we reproduce known
results from the literature, and add new results, showing the
benefits brought by our unifying formalism. Our conclusion
identifies remaining issues and perspectives in section 8.

2. NOTATIONS
RSs use available data to generate lists of recommendations.
Depending on the application, data can involve:

• Usage: the user visits a site and performs various ac-
tions on items shown (clicks, insertion-into-cart, pur-
chases) which are collected in the site log files. Such
actions provide feedback on the user’s interest in a
given item, which are essentially positive (the fact that
the user did not act on the item at that time does not
necessarily mean he did not like it). This data is often
called implicit because the user did not generate it in-
tentionally, but it comes as a side effect of the user’s
actions.

• Ratings: the user posts his evaluations or “likes” of
items displayed on the site. These ratings can appear
as stars, numbers or even comments. They can be
positive or negative. Most users will not leave any
evaluation and those who do might widely differ in
their rating ways. Ratings are said to be explicit data,
since the user intentionally acted to provide them.

• Additional data: in most cases, many more data
sources exist on items and users.

– Items: items such as products, contents or ban-
ners usually have associated attributes, such as
for example the title and author of a book. Ob-
viously these attributes are important to under-
stand whether a user could be interested in the
item.

– Users: various types of information might be avail-
able, from a mere IP address to cookies to de-
tailed attributes of registered customers (name,
address, history of purchases, etc). Knowing the
user in details should help building personalized
recommendations for him/her. Additionally, in-
formation from social media (friends, followers,
etc) might also be available.

– Data from the RS: the RS itself produces ordered
lists of items recommended to the user who might
like them later (clicks, purchases, etc. will indi-
cate that).

Usage and rating data can be represented by an interaction
(or preferences) matrix R which encodes the actions of users
on items. Table 1 below, for example, shows 4 users who
rated 5 movies (ratings are shown by numbers). In the case
where the user’s interaction is a purchase or a click, matrix
R is binary, with 1 indicating the item was purchased and 0
it was not. In cases where repeated consumption is possible,

values in matrix R indicate the number of times the item was
consumed, thus leading to R having the same structure as
for ratings. In the following, we will use the word consume
to indifferently mean rate, purchase or click.

Monuments
Men

Django
Unchained

Forrest
Gump

Gran
Torino

Pulp
Fiction

Amy 3 2 5
Paul 4 2
Rob 5 4 1
Liz 2 3

Table 1: Interaction matrix R in the case of ratings.

It should be noted that collecting implicit user’s behavior
is usually easier than requiring the user to provide explicit
feedback or provide access to his / her social network. Most
users purchase but very few items and rate even less: as few
as 1% of users who consume an item might also rate it. As
a result, matrix R is often very sparse, even more so in the
case of ratings.

We will denote by L (resp. C) the total number of users or
lines in R (resp. total number of items or columns). Matrix
R is thus of dimensions L x C. Usually, matrix R is very
large: a few millions × a few tens-hundreds of thousands.

3. STATE-OF-THE-ART
RSs have been studied for more than 15 years now [1; 8].
Traditional techniques are grouped into content-based, Col-
laborative Filtering, hybrid, and, more recently, social [8],
which we describe in this section.

3.1 Content-based
Content-based RS [1; 35; 46] use items (or users) descrip-
tions to define items’ (or users) profiles. A user is then
recommended items which profiles best match the items he
best rated in the past, or items which users with most sim-
ilar profiles best rated in the past. Sometimes, users only
provide descriptions (instead of ratings), in this case items’
profiles are constructed using these descriptions [16]. To im-
plement Content-based RSs, we need a similarity measure
(among items or users) and profiles comparison (for example
k-nearest neighbors).

3.2 Collaborative Filtering
Collaborative Filtering is certainly the most widely used
technique for implementing RSs. There exist two main groups
of CF techniques: memory-based (or neighborhood meth-
ods [1]), and model-based (or latent factor models [42]).

As stated earlier in the introduction, CF methods use the
opinion of a group of similar users to recommend items to
the active user [1; 27; 32; 42; 54]. According to [42], the two
key assumptions behind these systems are:

• Users who had similar tastes in the past will have sim-
ilar tastes in the future;

• Users’ preferences remain stable and consistent over
time.
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In the literature, there exist two main groups of CF tech-
niques [59]: model-based or latent factor models [42; 34; 2]
and memory-based or neighborhood methods [1; 32].

3.2.1 Model-based methods
Model-based RSs [11; 14; 29; 54; 60; 61] estimate a global
model, through machine learning techniques, to produce un-
known ratings. This leads to models that neatly fit data and
therefore to RSs with good quality. However, learning a mo-
del may require lots of training data which could be an issue
in some applications. In the literature many model-based
CF systems have been proposed:

• Reference [11] proposes a probabilistic model in which
ratings are integer valued; the model is then learnt
using Bayesian networks;

• Reference [61] designs a CF system based on support
vector machine (SVM) by iteratively estimating all
missing ratings using an heuristic;

• Reference [29] develops a neural network-based collab-
orative method: a user-based and an item-based meth-
ods;

• Reference [28] describes various methods used for the
Netflix prize1 and in particular the matrix factoriza-
tion methods which provided the best results.

One of the most efficient and best used model-based meth-
ods is matrix factorization [42; 59] in which users and items
are represented in a low-dimensional latent factors space.
The new representations of users (Û) and items (Î) are com-
monly computed by minimizing the regularized squared er-
ror [59]:

min
Û,Î

�

u,i

��
ru,i − v̂Tu v̂i

�2
+ λ1 � v̂u �2 +λ2 � v̂i �2

�
(1)

where λ1 and λ2 are regularization parameters, ru,i is the
rating that user u gave to item i, v̂u and v̂i are the new rep-
resentations of user u and item i respectively, Û and Î are
the new representation sets of the sets of users and items, re-
spectively. Once the new representations of users and items
v̂u and v̂i have been computed, we can obtain the predicted
rating r̂u,i as follows:

r̂u,i = v̂Tu v̂i (2)

Matrix factorization methods can be generalized to proba-
bilistic models called Probabilistic Matrix Factorization [42;
50; 59]. These techniques are more suited to explicit feed-
back cases. They usually produce very good results but
suffer from extremely large sizes of matrix R [3].

3.2.2 Memory-based methods
Memory-based CF techniques rely on the notion of similarity
between users or items to build neighborhoods methods.

3.2.2.1 Similarity.
If a is the active user for whom we seek recommendations,
u another user and i and j two items, we will denote:

1http://www.netflixprize.com

• I(a), I(u) and I(a&u) = I(a) ∩ I(u) the sets of items
consumed by a, u, both a and u respectively.

• U(i), U(j) and U(i&j) = U(i) ∩ U(j) the set of users
who consumed i, j and both i and j, respectively.

• −→
l (u) the line of matrix R for user u and −→c (i) its
column for item i,

• l(u) the average of
−→
l (u) (average rating given by u or

average number of items consumed by u) and c(i) the
average of −→c (i) (i’s average rating or average number
of users who consumed i).

l(u) =
1

C

C�

i=1

rui c(i) =
1

L

L�

u=1

rui

The similarity between users a and u can be defined through
many similarity measures, for example cosine, Pearson cor-
relation coefficient (PCC) [1] or asymmetric cosine [3] simi-
larities (equations (3), (4) & (5) below respectively):

Sim(a, u) = cos
�−→
l (a),

−→
l (u)

�

=

C�

i=1

rai × rui

����
C�

i=1

(rai)2

����
C�

i=1

(rui)2

(3)

Sim(a, u) = PCC
�−→
l (a),

−→
l (u)

�

=

�

i∈I(a)∩I(u)

�
rai − l(a)

��
rui − l(u)

�

� �

i∈I(a)∩I(u)

�
rai − l(a)

�2� �

i∈I(a)∩I(u)

�
rui − l(u)

�2

(4)

Sim(a, u) = asym-cosα

�−→
l (a),

−→
l (u)

�

=

C�

i=1

rai × rui

� C�

i=1

r2ai

�α
×

� C�

i=1

r2ui

�1−α

(5)

Note that, in the binary case, asymmetric cosine for α = 1
2

is equivalent to cosine similarity. The similarity between
items i and j can be defined in the same fashion: cosine,
Pearson correlation coefficient or asymmetric cosine (equa-
tions (6), (7) & (8) below respectively):

Sim(i, j) = cos
�−→c (i),−→c (j)

�

=

L�

u=1

rui × ruj

����
L�

u=1

(rui)2

����
L�

u=1

(ruj)2

(6)
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Sim(i, j) = PCC
�−→c (i),−→c (j)

�

=

�

u∈U(i)∩U(j)

�
rui − c(i)

��
ruj − c(j)

�

� �

u∈U(i)∩U(j)

�
rui − c(i)

�2� �

u∈U(i)∩U(j)

�
ruj − c(j)

�2

(7)

Sim(i, j) = asym-cosα

�−→c (i),−→c (j)
�

=

L�

u=1

rui × ruj

� L�

u=1

r2ui

�α
×

� L�

u=1

r2uj

�1−α

(8)

It should be noted that both users and items similarity mea-
sures above take into account the actions on all items (resp.
of all users): this is why these measures are called collabo-
rative.

3.2.2.2 Collaborative Filtering scores.
CF techniques produce, for an active user a, a list of recom-
mended items ranked through a scoring function (or aggre-
gation function), which takes into account either users most
similar to a (user-based CF) or items most similar to those
consumed by a (item-based CF).

Let us thus denote K(a) the neighborhood of a and V (i) the
neighborhood of item i. These neighborhoods can be defined
in many ways (for example, N -nearest neighbors, for some
given N , or neighbors with similarity larger than a given
threshold, using user/item similarity).

The score functions are then defined for users and items as:

Score(a, i) =
�

u∈K(a)

rui × f
�
Sim(a, u)

�

Score(a, i) =
�

j∈V (i)

raj × g
�
Sim(i, j)

� (9)

where various functions f and g can be used [1]:

• For user-based CF: average rating (or popularity) of
item i by neighbors of a in K(a), weighted average
rating and normalized average rating of nearest users
weighted by similarity to a (from top to bottom in
equation (10) below):

Score(a, i) =
1

card
�
K(a)]

�

u∈K(a)

rui

Score(a, i) =

�

u∈K(a)

rui × Sim(a, u)

�

u∈K(a)∩U(i)

|Sim(a, u)|

Score(a, i) = l(a) +

�

u∈K(a)∩U(i)

�
rui − l(u)

�
× Sim(a, u)

�

u∈K(a)∩U(i)

|Sim(a, u)|

(10)

• For item-based CF: average rating by a of items neigh-
bors of i in V (i), weighted average rating, normalized

average rating weighted by their similarity with i:

Score(a, i) =
1

card
�
V (i)

�
�

j∈V (i)

raj

Score(a, i) =

�

j∈V (i)

raj × Sim(i, j)

�

j∈V (i)∩I(a)

|Sim(i, j)|

Score(a, i) = c(i) +

�

j∈V (i)∩I(a)

�
raj − c(j)

�
× Sim(i, j)

�

j∈V (i)∩I(a)

|Sim(i, j)|

(11)

Another mechanism has been developed [3] to produce local-
ity instead of explicitly defining neighborhoods. Functions
f and g are defined so as to put more emphasis on high
similarities (with high q, q�):

Score(a, i) =
�

u∈K(a)

rui ×
�
Sim(a, u)

�q

Score(a, i) =
�

j∈V (i)

raj ×
�
Sim(i, j)

�q� (12)

For q = 0, this is equivalent to average rating, and for q = 1,
this is similar to weighted average rating.
We then rank items i by decreasing scores and retain the
top k items (ia1 , i

a
2 , ..., i

a
k) which are recommended to a, such

that:

Score(a, ia1) ≥ Score(a, ia2) ≥ ... ≥ Score(a, iak) (13)

3.2.2.3 Conclusion on CF techniques.
Notice that while memory-based techniques produce ranked
lists of items, model-based techniques predict ratings, through
a score which can be used also to rank recommendations. In
practice, all CF systems suffer from several drawbacks:

• New user/item: collaborative systems cannot make ac-
curate recommendation to new users since they have
not rated a sufficient number of items to determine
their preferences. The same problem arises for new
items, which have not obtained enough ratings from
users. This problem is known as the cold start recom-
mendation problem;

• Scalability: memory-based systems generally have a
scalability issue, because they need to calculate the
similarity between all pairs of users (resp. items) to
make recommendations;

• Sparsity: the number of available ratings is usually ex-
tremely small compared to the total number of pairs
user - item; as a result the computed similarities be-
tween users and items are not stable (adding a few
new ratings can dramatically change similarities) and
so predicted ratings are not stable either;

• Information: of course memory-based and model-based
techniques use very limited information, namely rat-
ings/purchases only. They could not use content on
users or items, nor social relationships if these were
available.
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The representation of users and items in a low dimensional
space in latent factor models mitigates the cold start recom-
mendation problem but raises a scalability issue. In general,
latent factor methods are known to generally yield better re-
sults than neighborhood methods [28; 42; 59].

3.3 Social Recommender Systems
Traditional RSs, and in particular model-based systems, rely
on the (often implicit) assumption that users are indepen-
dent, identically distributed (i.i.d). The same holds for it-
ems. However, this is not the case on social networks where
users enjoy rich relationships with other members on the net-
work. It has long been observed in sociology [40] that users’
“friends” on such networks have similar taste (homophily).
It is thus natural that new techniques [65] extended previous
RSs by making use of social network structures. However, it
was realized that the type of interaction taken into account
could have a dramatic impact on the quality of the obtained
social recommender [65]. In this section, we review three
families of social recommender: one based on explicit social
links, one based on trust and an emerging family based on
implicit links.

3.3.1 Social Recommender Systems based on explicit
social links

In this section, we assume that users are connected through
explicit relationships such as friend, follower etc. Unsur-
prisingly, with the recent thrive of online social networks, it
has been found that users prefer recommendations made by
their friends than those provided by online RSs, which use
anonymous people similar to them [53]. Most Social RSs are
based on CF methods: social collaborative recommenders,
like traditional CF systems, can be divided into two fami-
lies: memory-based and model-based systems.

3.3.1.1 Memory-based Social Recommender.
Memory-based methods in social recommendation are sim-
ilar to those in CF (presented in section 3.2.2), the only
difference being the use of explicit social relationship for
computing similarities.

• In [64; 65] the authors present their social-network-
based CF system (SNCF), a modified version of the
traditional user-based CF and test it on Essembly.com2

which provides two sorts of links: friends and allies.

– In [64], they use a graph theoretic approach to
compute users’ similarity as the minimal distance
between two nodes (using Dijkstra’s algorithm for
instance), instead of using the ratings’ patterns
as in traditional CF; it is assumed that the in-
fluence will exponentially decay as distance in-
creases. They show that this method produces
results worse than traditional CF;

– In [65], the user’s neighborhood is just simply its
set of friends in the network (first circle). This
approach provides results slightly worse than the
best CF. But the computation load is much re-
duced: from computing the similarity of all pairs

2http://www.essembly.com

of users to just looking for the user’s friends. This
is a dramatic improvement to the scalability is-
sues of CF. They also show that if the allies are
used instead of friends, then the results are as
good as CF, but at a much reduced computation
cost.

• In [24], authors observe on a dataset from Yelp3 that
friends tend to give restaurant ratings (slightly) more
similar than non-friends. However, immediate friends
tend to differ in ratings by 0.88 (out of 5), which is
rather similar to results in [65]. Their experimental
setup compares their model-based algorithm (proba-
bilistic), a Friends Average approach (which only av-
erages the ratings of the immediate friend), a Weighted
Friends (more weight is given to friends which are more
similar according to cosine-similarity), a Naive Bayes
approach and a traditional CF method. All methods
which use the influences from friends achieve better
results than CF in terms of prediction accuracy.

• Reference [12] presents SaND (Social Network and Dis-
covery), a social recommendation system; SaND is an
aggregation tool for information discovery and analy-
sis over the social data gathered from IBM Lotus Con-
nections’ applications. For a given query, the proposed
system combines the active user’s score, scores from his
connections and scores between terms and the query;

• Reference [51] proposes two social recommendation
models: the first one is based on social contagion while
the second is based on social influence. The authors
define the social contagion model as a model to simu-
late how an opinion on certain items spreads through
the social network;

• Reference [19] proposes a group recommendation sys-
tem in which recommendations are made based on the
strength of the social relationships in the active group.
This strength is computed using the strengths of the
social relationship between pairwise social links (scaled
from 1 to 5 and based on daily contact frequency).

3.3.1.2 Model-based Social Recommenders.
Model-based methods in social recommenders represent users
and items into a latent space vector (as described in sec-
tion 3.2.1) making sure that users’ latent vectors are close
to those of their friends.

• Reference [4] combined matrix factorization and friend-
ship links to make recommendations: the recommen-
dation score for the active user is the sum of the scores
of his friends.

• Reference [38] proposes algorithms which yield bet-
ter results than non-negative matrix factorization [31],
probabilistic matrix factorization [42] and a trust-aware
recommendation method [37]. It presents two social
RSs:

– A matrix factorization making sure that the la-
tent vector of a given user is close to the weighted
average latent vectors of his friends;

3http://www.yelp.com
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– A matrix factorization minimizing the difference
between a user’s and his friends’ latent vectors
individually.

Finally, a few social RSs combine social and content-based
techniques. For example, [17] proposes two ways to aggre-
gate users’ preferences with those of their friends: enrich
users’ profiles with those of their friends or aggregate users’
recommendation scores with those of their social relation-
ships.

3.3.2 Trust and influence-based social Recommender
Systems

As explained in [38] “trust relationships” are different from
“social relationships” in many respects. Trust-aware RSs
are based on the assumption that users have taste similar to
other users they trust, while in social RSs, some of the active
user’s friends may have totally different tastes from him [38].
This was also observed in [65], with the differences between
friends and allies, which represents a case where trust is ex-
plicitly provided by users.

In everyday life, people may ask other people (friends, rel-
atives, someone they trust) for a recommendation. If the
person cannot provide sufficient information, she may indi-
cate another person whom she knows which could, and so
on. The notion of trust network arises naturally: one tend
to have faith in the opinion of people trusted by the peo-
ple he trusts himself, transitively. Conversely, the notion of
social influence has long been used in marketing, relying on
the assumption that users are likely to make choices simi-
lar to their role-models [49]. The notion of influence can be
seen as close to that of trust: when providing a friend with
a referral, a trusted user influences her friend. It has long
been known that this “word-of-mouth effect” can be used
commercially, such as for example in viral marketing.

Recently, it was attempted to incorporate trust or influence
knowledge into RSs. Beyond the mere expected increase in
efficiency, computing trust may also alleviate recurrent prob-
lems of traditional RSs, such as data sparsity, cold start or
shilling attacks (fake profile injections) to bias recommen-
dations.

3.3.2.1 Trust computation.
The trust relationship is directional, i.e. the fact that user
u1 trusts user u2 at some level t does not necessarily mean
that u2 trusts u1 at the same or another level. Trust can
be represented by a binary value, 0 for “not trusted user”
and 1 for “trusted user”, or through more gradual scales [20;
21; 39] or even with a probabilistic approach [15; 48]. Some
models include an explicit notion of distrust [21; 67], but
most of them ignore it.

For RSs, trust is computed over an explicit social network
to increase the information available to generate recommen-
dations. There exist two cases in the literature: either trust
is provided explicitly in a trust network, or it has to be in-
ferred.

In an explicit trust network, we propagate and aggregate

trust to infer long chains of trust [67; 20]. Trust compu-
tation also requires an aggregation strategy, to combine es-
timates obtained from different paths from one user to an-
other. Several operators may be used like minimum, maxi-
mum, (un)weighted sum and average. Different strategies
may also be applied: propagate trust first, then aggregate;
or aggregate first, then propagate (the latter allowing easier
distributed computation).

In non-explicit trust networks, trust has to be inferred. For
example, in [45], the author defines a profile and item-level
trust, based on correct previous recommendations.

3.3.2.2 Trust-enhanced Recommender Systems.
In explicit trust networks, users provide the system with
trust statements for their peers, be it on a gradual scale
(Moleskiing [5]), allies (Essembly [65]) or lists of trusted
and non-trusted people (Epinions [39]). Then, for the rec-
ommendation to a specific user u, trust is estimated between
u and the relevant users, in order to weigh the recommenda-
tion computation, either through trust-based weighted mean
(rating from user u for item i is an ordinary weighted mean
of the ratings of users which have evaluated i, where the
weights are the trust estimates for these users) or Trust-
based CF (as in classical CF methods, replacing similarity-
based weights by trust-based weights obtained via propaga-
tion and aggregation strategies as described above).

3.3.3 Social Recommender Systems based on implicit
social links

Recently, a new type of social RSs has been introduced
which rely not upon an explicit social network (as in sec-
tion 3.3.1) but upon networks which can be derived from
users’ behaviors and have thus been named implicit net-
works. Users will be – implicitly – connected if, for exam-
ple, they take pictures in the same locations [23], they attend
the same events or click on the same ads [44]. The implicit
users’ social network can then be used, as in section 3.3.1)
to build recommendations.

For example, [57] extracts from cooking recipes bipartite
graph (recipes, ingredients) and sets the weight of the link
in the ingredients network as the point-wise mutual informa-
tion of the ingredients, extremities of the link. Authors then
apply a discriminative machine learning method (stochas-
tic gradient boosting trees), using features extracted from
the ingredients network, to predict recipe ratings and re-
commend recipes. Results show that the structural features
extracted from the ingredient networks are most critical for
performances.

Similar approaches have been developed for RSs where no
ratings are provided, but only information on whether ob-
jects were collected (product purchased, banner clicked, movie
watched, song listened to).

• Reference [66] uses a resource-allocation process in the
object network to define the weight on the links and
an aggregate score : they show that their technique
is more efficient on the MovieLens dataset than tradi-
tional CF;

SIGKDD Explorations Volume 16, Issue 2 Page 25



• Reference [44] shows an example to recommend ads
banners: for an active user, the similarity among ban-
ners is measured by the number of users who clicked
on both. Then traditional item-based CF is applied.
Authors show a 20-fold increase in number of cumu-
lated clicks with the social RS compared to the random
selection of 5 recommendations.

3.3.4 Conclusion
Social RSs are still relatively new. There is a lot of active
research in this area and it should be expected that new re-
sults will extend the field of traditional systems to incorpo-
rate social information of all sorts. In particular, the field of
social recommenders built on implicit social networks seems
particularly promising and we will now dig deeper in this
direction to produce our Social Filtering formalism.

4. SOCIAL FILTERING
Our Social Filtering formalism (SF) is based upon a
bipartite graph and its projections (see [22; 66] for a discus-
sion of bipartite graphs). A bipartite graph is defined over
a set of nodes separated into two non-overlapping subsets:
for example, users and items, items and their features, etc.
A link can only be established between nodes in different
sets: a link connects a user to the items she has consumed.
The bipartite network is then projected into two (unipar-
tite) networks, one for each set of nodes: a Users’ and an
Items’ networks. In the projection (see Figure 1), two nodes
are connected if they had common neighbors in the bipartite
graph. The link weight can be used to indicate the number
of shared neighbors. For example, two users are linked if
they have consumed at least one item in common (we usu-
ally impose a more stringent condition: at least K items).
The projected networks can thus be viewed as the network
of users consuming at least K same items (users having the
same preferences) and the network of items consumed by at
least K� same users (items liked by the same people).

Projected networks can then be used to define neighbor-
hoods [55] or recommendation algorithms which perform
better than conventional CF on the MovieLens dataset [66].
This generic formalism extends these early contributions:
we are able to reproduce results from various classical ap-
proaches, and we also provide new approaches, allowing
more flexibility and potential for improved performances,
depending on the dataset.

In the SF formalism, as in traditional CF, we build rec-
ommendations by defining neighborhoods and scoring func-
tions.

4.1 Similarity

4.1.1 Support-based similarity
In the case of implicit feedback (binary interaction matrix
R), in essence, the link between two users a and u (resp. i
and j) represents an association rule a → u (resp. i → j)
with the link weight proportional to the rule support, where

Figure 1: Bipartite graph and projections

support of rule a → u (resp. i → j) is defined as:

Supp(a → u) =
# Items cons. by a and u

# Items
=

1

C

C�

i=1

rairui

Supp(i → j) =
# Users who cons. i and j

# Users
=

1

L

L�

u=1

ruiruj

In the case of a non-binary matrix R (ratings), support is
similarly defined. Hence, Support is defined in general as:

Supp(a → u) =
1

C

C�

i=1

rairui

Supp(i → j) =
1

L

L�

u=1

ruiruj

(14)

Support is similar to cosine similarity (equations (3) and (6)),
so that we can use support as a similarity measure. We will
define support-based similarity of users (resp. items) as:

Sim(a, u) = Supp(a → u)

Sim(i, j) = Supp(i → j)
(15)

4.1.2 Confidence-based similarity
In the case of implicit feedback, the confidence of link a → u
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(resp. i → j) is defined, as for association rules, by:

Conf(a → u) =
# Items cons. by a and u

# Items cons. by a
=

�C
i=1 rairui�C
i=1 rai

Conf(i → j) =
# Users who cons. i and j

# Users who cons. i
=

�L
u=1 ruiruj�L

u=1 rui

For ratings (non-binary matrix R), confidence will be simi-
larly defined. Hence, Confidence is defined in general as:

Conf(a → u) =

�C
i=1 rairui�C
i=1 rai

Conf(i → j) =

�L
u=1 ruiruj�L

u=1 rui

(16)

This is again similar to cosine similarity. We can thus also
use confidence as a similarity measure. Confidence-based
similarity of users (resp. items) is defined as:

Sim(a, u) = Conf(a → u)

Sim(i, j) = Conf(i → j)
(17)

4.1.3 Asymmetric confidence-based similarity
We might want to define similarity between a and u (resp.
i and j) from both a → u and u → a links, which is not the
case for confidence. Following [3], we thus define the follow-
ing Asymmetric Confidence-based Similarity of users/items,
where α is a parameter to be tuned by cross-validation:

Sim(a, u) =
�
Conf(a → u)

�α �
Conf(u → a)

�(1−α)

Sim(i, j) =
�
Conf(i → j)

�α �
Conf(j → i)

�(1−α)
(18)

This measure is identical to asymmetric cosine, generalizes
confidence similarity of link a → u (for α = 0) and of link
u → a (for α = 1) and, in the case where matrix R is binary,
cosine similarity as well (for α = 0.5).

4.1.4 Jaccard Index-based similarity
Jaccard Index [36] measures the similarity of lists by count-
ing how many elements they have in common. The Jaccard
Index of users a and u (resp. items i and j) is defined (in
the binary case) as:

Jaccard(a, u) =
Card

�−→
l (a) ∩ −→

l (u)
�

Card
�−→
l (a) ∪ −→

l (u)
�

Jaccard(i, j) =
Card [−→c (i) ∩ −→c (j)]
Card [−→c (i) ∪ −→c (j)]

According to the definition of the Jaccard index, we thus
have for users (and similarly for items):

Jaccard(a, u) =

C�

i=1

rai × rui

C�

i=1

rai +

C�

i=1

rui −
C�

i=1

rai × rui

=
#Items Cons. By a and u

(#Items Cons. By a) + (#Items Cons. By u)− (#Items Cons. By a and u)

As above, Jaccard index will be similarly defined if matrix R
is not binary. Hence, Jaccard index for users / items is

defined as:

Jaccard(a, u) =

C�

i=1

rai × rui

C�

i=1

rai +

C�

i=1

rui −
C�

i=1

rai × rui

Jaccard(i, j) =

L�

u=1

rui × ruj

C�

u=1

rui +

C�

u=1

ruj −
C�

u=1

rui × ruj

(19)

We then define the Jaccard-based Similarity of users / items
as:

Sim(a, u) = Jaccard(a, u)

Sim(i, j) = Jaccard(i, j)
(20)

4.2 Neighborhoods
Now that we have defined various similarity measures, we
can define the neighborhood K(a) of user a (resp. V (i)
of item i): we only give the definition for users, items are
similar) in any of the following ways (all users or only the
Top N or only those with similarity measure larger than a
threshold can be chosen):

• K(a) is the first circle of user a in the Users graph,
where neighbors of a in the circle can be rank-ordered
by any of the previously defined similarity measures:
support-based; confidence-based; asymmetric confidence-
based; Jaccard Index-based.

• K(a) is the local community of user a in the Users
graph, where local communities are defined as in [43].

• K(a) is the community of user a in the Users graph
(where communities are defined, for example, by max-
imizing modularity [22]).

These last two cases are completely novel ways to define
neighborhoods: they exploit the homophily expected in so-
cial networks (even implicit as here), where users with the
same behavior tend to connect and be part of the same com-
munity. In CF, users in K(a) (with cosine similarity) are
such that they have consumed at least one item in common
(otherwise their cosine would be 0); in the SF setting such
users would be linked in the Users graph (K ≥ 1). In the
above community-based definitions of K(a), users in K(a)
might not be directly connected to active user a. These
definitions thus embody some notion of paths linking users,
through common usage patterns.

4.3 Social Collaborative Filtering scores
We now define scoring functions as for Collaborative filtering
(equations (10), (11) and (12) above) with the various social
similarity measures (equations (15), (17), (18) and (20)) and
the various neighborhoods we have defined.

• For user-based SF: average rating (or popularity) of
item i by neighbors of a in K(a), weighted average rat-
ing, normalized average rating of nearest users weighted
by similarity to a, as in equation (10) above.
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• For item-based SF: average rating by a of items neigh-
bors of i in V (i), weighted average rating, normalized
average rating of nearest items weighted by their sim-
ilarity with i, as in equation (11) above.

As in equation (12), scores with locality parameters q and
q� can be used with any of the similarity measures defined
above.

We then rank-order items i by decreasing scores as in equa-
tion (13) and retain the top k (ia1 , i

a
2 , . . . , i

a
k) recommended

to a.

5. SOCIAL FILTERING AND OTHER RSs
To implement the SF framework, we need to build the bi-
partite network and project it to unipartite networks, af-
ter choosing adequate parameters K and K� (Figure 1) and
eliminating mega-hubs if necessary [44]. Then, depending
upon the choice of similarity measure (equations (15), (17),
(18) and (19)), neighborhoods and score function (equa-
tions (10), (11) or (12)) we obtain a RS which is equivalent
to one of the following classical recommender systems:

• Association rules [9] of length 2 can be used for rec-
ommendation [47]. They are obtained from the item-
based SF formalism with K = K� = 1, asymmetric
confidence-based similarity with α = 0, N = 1 (V (i) is
reduced to the first nearest neighbor) and local scoring
function (equation (12)) with q� = 1.

• CF is obtained with K = K� = 1, asymmetric confi-
dence with α = 0.5 (cosine similarity) and the usual
CF score functions (identical to those used by SF).

• CF with locality [3] is obtained with K = K� = 1,
asymmetric confidence and score function as in equa-
tion (12).

• Social RS: if an explicit social network is available,
such as a friendship network for example, then one can
use that network as a Users’ graph and proceed as in
the SF framework. In [65], the authors use the first
circle as neighborhood and show that their results are
slightly worse than conventional CF, but at a much
reduced computational cost.

• Content-based RS: instead of building a bipartite
Users x Items graph, one could use the exact same
methodology and build a bipartite Users x Users’ at-
tributes or Items x Items’ attributes graph and recom-
mend items liked by similar users or items similar to
those consumed by the user, with a similarity measure
based on the projected graphs.

As can be seen above, the SF formalism generalizes various
well established recommendation techniques. However, it
offers new possibilities as well: the Social Filtering formal-
ism thus extends content-based, association rules and CF,
with new similarity measures and new ways to define neigh-
borhoods.

By only building once one bipartite graph and the pro-
jected unipartite graphs, we have at our disposal, in a unique
framework, a full set of similarity measures, neighborhood

definitions and scoring functions; thus allowing us to pro-
duce many different RSs, evaluate their performances and
select the best.

We will illustrate in section 7 performances on various stan-
dard datasets, comparing our SF formalism to conventional
techniques and showing original results produced within our
SF framework.

6. EVALUATION

6.1 Performance metrics
A RS can be asked either to predict a rating (in the case of
explicit feedback) or to rank items (in the case of implicit
feedback). The two visions are quite different and globally
correspond to model-based and memory-based approaches
in CF respectively [1]. Performance metrics differ in these
two cases [52].

Predictive case: we want to evaluate how close predicted
rating r̂ij is to actual rating rij . We thus use classical per-
formance metrics from machine learning:

• AUC: Area Under the Curve [52].

• RMSE (Root Mean Square Error) and MAE (Mean
Absolute Error) defined as:

MAE =
1

I

�

i,j

|rij − r̂ij |

RMSE =

�
1

I

�

i,j

(rij − r̂ij)2
(21)

where I is the total number of tested ratings.

Ranking case: in that case, we want to evaluate whether
recommended items were adequate for the user; for exam-
ple, recommended items were later consumed. We thus have
a Target set for each user which represents the set of it-
ems he consumed after being recommended. This can be
implemented by splitting the available dataset into Train-
ing / Testing subsets (taking into account time stamps if
available). In this case, metrics are those classically used in
information retrieval:

• Recall@k and Precision@k are defined as:

Recall@k =
1

L

�

a

Card(Ra ∩ Ta)

Card(Ta)

Precision@k =
1

L

�

a

Card(Ra ∩ Ta)

k

(22)

where Ra = (ia1 , i
a
2 , ..., i

a
k) is the set of k items recom-

mended to a, Ta is the target set for a. We can also
plot Recall@k as a function of the number of recom-
mended items and compute the AUC for that curve.

• Fβ-mesure: Fβ is designed to take into account both
recall and precision; F1 is the most commonly used.
Fβ is defined as :

Fβ@k =
(1 + β2)× prec@k × recall@k

(β2 × prec@k) + recall@k
(23)
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• MAP@k (Mean Average Precision) was used, for ex-
ample, in the Million Song Dataset challenge4; it is
defined as:

MAP@k =
1

L

L�

a=1

1

k

k�

i=1

Cai

i
1ai (24)

where Cai is the number of correct recommendations
to user a in the first i recommendations (Precision@i
for user a) and 1ai = 1 if item at rank i is correct (for
user a), 0 otherwise.

In practical situations, we are also interested in more qual-
itative indicators showing whether all users (resp. items)
get recommendations (resp. are recommended) or which it-
ems are recommended: as we will see, some RSs might be
better on performance indicators and poorer on these qual-
itative indicators and it will be the user’s choice to trade
performance decrease for qualitative indicators increase.

• Users’ coverage: this is the proportion of users who
get recommendations:

UsersCoverage@k =
# Users in Test with k Reco

Ltest

(25)
where Ltest is the number of users in the test set.

• When Users’ coverage is partial, we want to know what
the average number of recommendations was for
the users with partial lists:

AvNbRec@k =

k−1�

K=0

K
# Users in Test with k Reco

Ltest −# Users with k Reco

(26)

• Items’ coverage: higher diversity (recommended it-
ems are varied) should result in more attractive rec-
ommendations [52]. We thus want to have a high cov-
erage, i.e. a high proportion of items which get rec-
ommended. When this is evaluated on a test set (e.g.
10% of users), the Items’ coverage will appear lower
than if we were evaluating it on the full population
of users. Yet, since all other indicators are evaluated
on the test set, for homogeneity reasons, we will also
report the evaluation of Items’ coverage of the lists of
recommended items for users in the test set.

ItemsCoverage@k =
# Items in Reco Lists

C
(27)

• Head/Tail coverage: if we rank items by decreasing

popularity (number of users who purchased the item),
we call Head the 20% of items with highest popularity
and Tail the remaining 80% [47]. Recommending only
most popular items will result in relatively poor per-
formances and low diversity. We thus define the rate
of recommended items in the Head and in the Tail :

RateHead@k =
1

Ltest

�

u∈Test

# Reco for u in Head

# Reco for u

RateTail@k =
1

Ltest

�

u∈Test

# Reco for u in Tail

# Reco for u

(28)
4http://kaggle.com/c/msdchallenge

where the sum runs on the Ltest users in the Test set.

Many more indicators are described in [52], but we will only
use these for the experiments described in section 7.

6.2 Data sets
To demonstrate the generality of our framework, we present
results on various datasets traditionally used in the litera-
ture. These datasets, shown in Table 2 are characterized by
the number of users, items, preferences (implicit shown by
a count of usage or explicit shown by ratings) and, in some
cases, existing explicit social relationships.

Dataset Preferences
Preferences

Type Users Items
Explicit
Social

LastFM 92,834 Count 1,892 17,632 25,434
MovieLens1M 1 M Ratings 6,040 3,883 –
Flixster 8.2 M Ratings 1 M 49,000 26.7 M
MSD 48 M Count 1.2 M 380,000 –

Table 2: Datasets.

• Lastfm: this dataset5 contains 92, 834 listening infor-
mation counts of 17, 632 artists by 1, 892 users of the
website Lastfm.com. There is an explicit friends’ net-
work with 25, 434 links.

• Flixster: this dataset6 contains 8.2 M ratings of about
49, 000 movies by about 1 M users. There is an explicit
friends’ network with 26.7 M links.

• MovieLens1M: this dataset7 contains 1, 000, 209 rat-
ings of approximately 3, 900 movies made by 6, 040
users who joined MovieLens in 2000.

• Million Song Dataset (MSD): this dataset was used

for a Kaggle challenge4. It contains 48 M listening
counts of 380, 000 songs by 1.2 M users.

Some performance results of RSs on these datasets are al-
ready available in the literature. See for example:

• Lastfm: user-based CF and inferred explicit trust net-
work [63];

• Flixster: user-based CF and matrix factorization [26];

• MovieLens1M: user-based CF and local scoring func-
tion with asymmetric confidence in [3]; CF and matrix-
factorization [62];

• MSD: CF and local scoring function with asymmetric
confidence [3].

7. EXPERIMENTS
We have implemented our SF formalism on the various data-
sets presented above. The goal of these experiments is not
to demonstrate that our formalism produces better results
than other RSs: this would have required systematic runs
of multiple splits and optimization of parameter choices;

5http://files.grouplens.org/datasets/hetrec2011/
hetrec2011-lastfm-2k.zip
6http://www.cs.ubc.ca/~jamalim/datasets/
7http://files.grouplens.org/datasets/movielens/
ml-1m.zip
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whereas we only performed one run without optimizing pa-
rameters.

We rather intend to show the versatility of our formalism
which provides many different ways to assemble the various
ingredients and produce old and new RSs. We also give de-
tails, which are not always present in the literature, about
the settings we used for the experiments. To allow for com-
parison, our code is available in open source8.

Our experiments will be presented in two sets:

• First, we show that our SF formalism produces results
identical to those found by conventional techniques,
demonstrating that this formalism can be particular-
ized into some of the existing techniques. Since re-
sults reported in the literature use various evaluation
metrics and settings (training/test splits for example),
we have defined homogeneous settings and reproduced
classical methods to compare them to our formalism;

• Then, we show cases where our SF formalism generates
new RSs.

In the experiments reported below, we have used various
settings which are not always explicit in the literature:

• Binarization of inputs

– Counts: we split the interval of counts into 10
bins with the same number of elements. We then
replace each count in matrix R by the bin index;

– Ratings: we transform ratings into value from 1
to 10 (for example rating 1 to 5 stars is multiplied
by 2);

– Then we transform values r ∈ [0, 10] into a binary
value. We have used the same setting as [3]: 10 is
coded as 1, all others as 0. Then all users, resp.
items, with their entire line, resp. column, at 0
are eliminated, which is a very drastic reduction
of the number of users and items.

• Data split: to evaluate performances, we split data
into two data sets, one used for training, the other for
testing. We implemented the same technique as in [3]
for the MSD challenge: take all users, randomize and
split: 90% users for training and 10% kept for testing.

– For training, we use all transactions of the 90%
users.

– We test on the remaining transactions of the test
users: we input 50% of the transactions of each
test user, and compare the obtained recommen-
dations list to the remaining 50%.

• Choices of similarity measure, neighborhood and
scoring function. These will be varied, producing
the various RSs we want to implement.

For reference, to compare performances obtained in our ex-
periments, we have implemented three classical techniques:

8https://bitbucket.org/danielbernardes/
socialfiltering

• Popularity: we rank items by decreasing popularity
(the sum of 1s in the matrix R item column); popu-
larity served as baseline in the MSD challenge4;

• Bigrams: we used the apriori algorithm for associ-
ation rules [9] with length 2 and thresholds on sup-
port and confidence at 1% and did not try to further
optimize the settings; items are ranked in decreasing
confidence of the rule generating them;

• NMF (non-negative matrix factorization): we

used the code9 associated to [28], with maximal rank
100 and maximum number of iterations 10,000 and did
not try to further optimize the settings.

Performances shown in Table 3 provide a baseline: figures
in bold indicate the best performance of the corresponding
category. We run our simulations on an Intel Xeon E7-4850
2,00 GHz (10 cores, 512 GB RAM), shared with members
of the team (so concurrent usage might have happened in
some of the experiments, with impact on reported time).
Computing time in hours is thus indicative only (0:01:00 is
1 min, 4:20:00 is 4 hours 20 min). Our formalism was im-
plemented using state-of- the-art libraries, such as Eigen10

for computing similarities.

As can be seen, bigrams are very efficient in terms of perfor-
mances on all four datasets (see also [47]) and they require
no parameters tuning (except the support and confidence
threshold). But bigrams have low Users’ and Items’ cover-
age, with all recommended items in the Head.

In contrast, NMF are very sensitive to parameters (maximal
rank and maximum number of iterations) and since we did
no try to optimize these parameters, we obtain low perfor-
mances here. In addition, NMF do not scale well with in-
creasing size of datasets. On the other hand, NMF have best
Users’ and Items’ coverage (note that after 4 days of comput-
ing time, we stopped NMF on MSD). These two techniques
illustrate the trade-off one has to make in practice: fine tune
parameters vs. default parameters to obtain optimal perfor-
mances, and performances vs. coverage. Finally scalability
is indeed a critical feature.

7.1 SFs reproduce classical RSs
We have implemented CF with the code provided by the
author11 in [3], in 2 versions:

• Classical CF [1] with cosine similarity and average
score. Results are shown in Table 4, lines CF IB (item-
based) and CF UB (user-based);

• CF with locality [3]: we exactly reproduced the re-
sults shown in [3] for k = 500 recommendations as
in the MSD challenge (we do not show these results
here). We show results in Table 4 for k = 10 recom-
mendations (columns CF IB Aiolli) for values q = 5
and α = 0. These results are coherent with those pre-
sented in [3].

9https://github.com/kimjingu/nonnegfac-python
10http://Eigen.tuxfamily.org
11Code on http://www.math.uni.pd.it/~aiolli/CODE/MSD
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Data sets LastFM Flixster MovieLens1M MSD

Methods Popularity Bigrams NMF Popularity Bigrams NMF Popularity Bigrams NMF Popularity Bigrams NMF
MAP @ 10 0.058 0.144 0.005 0.038 0.098 0.005 0.097 0.149 0.008 0.022 0.135 *
Prec @ 10 0.053 0.082 0.048 0.061 0.120 0.075 0.150 0.206 0.141 0.017 0.042 *
Recall @ 10 0.165 0.260 0.161 0.092 0.126 0.116 0.120 0.155 0.113 0.055 0.175 *
Users Full Coverage 100% 52.86% 100% 100% 74.00% 79.65% 100% 99.50% 100% 100% 0% *
Users Partial Coverage 0% 47% 0% 0% 26.00% 20.35% 0% 0.50% 0% 0% 100% *
– Avg. num. of recs. - 3.4 - - 2.3 2.8 - 5.0 - - 1.9 *
Items coverage 0.46% 1.13% 2.87% 0.06% 0.33% 0.60% 0.62% 3.47% 3.47% 0.008% 0.001% *
– Proportion in Tail 0% 0% 1.95% 0% 0% 0% 0% 0.30% 0.01% 0.00% 0.00% *
– Proportion in Head 100% 100% 98.05% 100% 100% 100% 100% 99.70% 99.99% 100.00% 100.00% *
Computation time 0:01:00 0:05:00 1:00:00 0:01:00 0:05:00 4:00:00 0:01:00 0:05:00 2:00:00 0:14:52 0:30:00 > 4 days

Table 3: Performances of reference techniques.

Note that in Table 4, the neighborhood chosen simply con-
sists of all users / items with non null similarity (the case
with q = 5 restores some locality). We found that limiting
to a Top N neighbors (we just tested N = 100) usually re-
sulted in decreased performances and coverage. Note that,
with the datasets sizes we use, a relative difference of 1% is
significant.

We have then implemented our SF formalism to reproduce
classical RSs:

• Association rules: we obtained, as expected, the ex-
act same performances as those shown in Table 3;

• Item-based CF: we again obtained, as expected, from
the SF formalism, the exact same results as those in
Table 4 (lines CF IB and CF UB with cosine similar-
ity, all users/items for neighborhoods K(a) and V (i)
and weighted average score).

• CF with locality: we implemented our SF frame-

work, with settings described in section 5 (K = K� =
1). The projected networks (and not the explicit net-
work in the case of Lastfm) can be used with different
similarity measures and scoring functions, producing
various RSs. We again obtained, as expected, from
the SF formalism the exact same results as those in
Table 4 (lines CF IB Aiolli and CF UB Aiolli).

When comparing CF IB, CF UB, with cosine or Aiolli asym-
metric confidence, we do not find one technique systemati-
cally best:

• For CF IB, asymmetric confidence has better per-
formances and poorer Items’ coverage than cosine on
datasets Lastfm and Flixster; but on MovieLens and
MSD, cosine is better for performances.

• For CF UB, asymmetric confidence is better than
cosine for all datasets except MovieLens.

• CF IB outperforms CF UB for all datasets except
Flixster (both in terms of performance and Users’ and
Items’ coverage).

Note that parameters (α = 0, q = 5) have not been opti-
mized the way they were in [3]: it would certainly be possi-
ble to choose, by cross-validation, better parameters. But,
as we said, the purpose of these experiments is not to fully
optimize settings.

Comparing Table 3 and Table 4 shows that bigrams seem to
perform best (except for MovieLens), but their Users’ cov-
erage is poor (because the filter on support and confidence
limits the number of rules: the threshold was not optimized).
These results show that our formalism covers these various
classical techniques: association rules, CF (item or user-
based) and CF with locality as in [3].

7.2 SF produces new RSs
We now show in Tables 5 and 6 implementations of the
SF formalism with various choices of similarity measures
(equations, (15), (17), (18) and (20)) and neighborhood
K(a)/V (i). We use as score function the weighted aver-
age (equations (10) and (11) middle) or, for the asymmetric
confidence similarity, the local score of equation (12). In our
implementation, we filter the links in the Users’ and Items’
networks with support / confidence less than 1%.

We thus have three differences with the classical implemen-
tations of CF above: one is the choice of neighborhood (first
circle or local community in the implicit Users or Items net-
work, instead of most similar users/items for CF); next one
is the filtering of links in SF which results in a reduction
in the numbers of neighbors; and last one is the choice of
various similarity measures such as support, confidence, or
Jaccard (equations (15), (17) and (20)). Here are our main
findings:

• Item-based Social Filtering:

– Results for SF IB with 1st circle as neighbor-
hood (in Table 5) show that the various similarity
measures produce rather different performances.
For all datasets, the best technique outperforms
bigrams, while improving Users’ coverage and
Items’ coverage. In addition, our implementation
of SF IB, compared to CF IB, for the parameters
of Table 4 (α = 0, q = 5) shows improved perfor-
mance for all datasets, except MovieLens. Note
that Jaccard similarity usually produces poor per-
formances but good Users’ and Items’ coverage
and also succeeds in recommending items in the
Tail. Except for MovieLens, where Jaccard simi-
larity provides the best performances on all indi-
cators.

– Results for SF IB with local community as neigh-
borhood are shown in Table 6. Because local com-
munities are not really relevant in implicit net-
works, we just run experiments on Lastfm and
Flixster. The use of local communities in these

SIGKDD Explorations Volume 16, Issue 2 Page 31



Datasets LastFM Flixster MovieLens1M MSD

Methods
CF IB ACF IB CF IB ACF IB CF IB ACF IB CF IB ACF IB

(cosine, average) (α=0, q=5) (cosine, average) (α=0, q=5) (cosine, average) (α=0, q=5) (cosine, average) (α=0, q=5)
MAP @ 10 0.066 0.107 0.082 0.082 0.170 0.147 0.075 0.078
Prec @ 10 0.054 0.072 0.090 0.091 0.223 0.199 0.057 0.053
Recall @ 10 0.154 0.240 0.164 0.164 0.169 0.150 0.158 0.160
Users Full Coverage 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 99.79% 100.00%
Users Partial Coverage 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.21% 0.00%
– Avg. num. of recs. - - - - - - 4.83 -
Items coverage 22.16% 12.44% 15.24% 5.40% 10.61% 6.80% 42.02% 22.88%
– Proportion in Head 66.97% 87.75% 92.00% 99.00% 98.50% 99.86% 66.20% 95.45%
– Proportion in Tail 33.03% 12.25% 8.00% 1.00% 1.50% 0.14% 33.80% 4.55%
Computation time 0:05:00 0:05:00 2:30:00 2:30:00 0:05:00 0:05:00 72:00:00 72:00:00

Methods
CF UB ACF UB CF UB ACF UB CF UB ACF UB CF UB ACF UB

(cosine, average) (α=0, q=5) (cosine, average) (α=0, q=5) (cosine, average) (α=0, q=5) (cosine, average) (α=0, q=5)
MAP @ 10 0.050 0.071 0.084 0.089 0.062 0.105 0.069 0.058
Prec @ 10 0.059 0.062 0.087 0.093 0.131 0.161 0.044 0.037
Recall @ 10 0.185 0.176 0.176 0.188 0.119 0.119 0.144 0.119
Users Full Coverage 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Users Partial Coverage 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
– Avg. num. of recs. - - - - - - - -
Items coverage 10.14% 14.01% 4.13% 8.22% 4.76% 15.13% 20.08% 27.59%
– Proportion in Head 89.76% 80.62% 99.70% 99.43% 99.76% 95.34% 96.97% 82.22%
– Proportion in Tail 10.24% 19.38% 0.30% 0.57% 0.24% 4.66% 4.03% 17.77%
Computation time 0:05:00 0:05:00 1:20:00 1:20:00 0:05:00 0:05:00 24:00:00 24:00:00

Table 4: Performances of Collaborative Filtering. CF and ACF are respectively the abbreviations of Collaborative Filtering
and Asymmetric Cosine Collaborative Filtering.

cases results in a lower MAP, and generally de-
grades all performance metrics.

• User-based Social Filtering:

– Results for SF UB in Table 5 vary depending on
the dataset: sometimes the best SF UB (usually
with asymmetric confidence) is better than CF
UB or bigrams; sometimes it is worse. For MSD,
SF UB has poorer MAP but better precision and
recall than best CF IB or bigram.

• Social RS: we implemented our SF formalism using
the explicit networks (Flixster and Lastfm) for Users’
graph; the neighborhood is the 1st Circle of friends,
Communities (computed with Louvain’s algorithm [7])
or Local Communities (computed with our algorithm
in [43]) and the score function is the average. Re-
sults in Table 7 show, as usual, various situations: on
Lastfm 1st Circle has best performances, but Commu-
nity better Users’ coverage and Local Community bet-
ter Items’ coverage. For Flixster, Community is best,
but 1st Circle has better Items’ coverage and Local
Community better Tail coverage.

7.3 Ensemble methods
As was demonstrated in many cases, and very notably in
the Netflix challenge [6; 30], ensembles of RSs often get im-
proved performances. We have thus implemented a few en-
sembles using a basic combination method, originated from [13],
and used in [3]. To combine N recommenders, we assemble,
for each user a, the N lists of k recommended items pro-
duced by the N RSs.

Let us denote (in1 , . . . , i
n
k ) the list of items recommended to

a (omitted in the notation) by RS n (with n = 1, ..., N).
Some of the lists might have less than k elements. For each
list, we assign points to the items in each list as follows: 1st
item gets k points, 2nd item k − 1, etc. The lists are then
fused and each item gets the sum of points in the various
lists, with the ties resolved through a priority on RSs (the

winner comes from the highest priority list).

In order to explore the potential of ensemble techniques,
we tried combinations of pairs of RSs: we tested combina-
tions of some of the best SF-based recommenders mentioned
above (Tables 4, 5 and 6). Results shown in Table 8 are en-
couraging:

• For Lastfm, the best two-systems ensemble is CF-IB
with Cosine similarity and weighted average score, com-
bined with SF-IB with asymmetric confidence simi-
larity and local score (q = 1,α = 0), which gets a
MAP@10 = 0.16. This performance is not better than
the one obtained with a unique recommender.

• For Flixster, we obtain an improvement: combining
SF-UB with asymmetric confidence similarity and lo-
cal score (q = 1,α = 0) and SF-UB with asymmetric
confidence similarity and local score (q = 5,α = 0)
leads to a MAP@10 of 0.175, while the best perfor-
mance was SF-UB with asymmetric confidence similar-
ity and local score (q = 5,α = 0) atMAP@10 = 0.157.

These preliminary results indeed confirm the potential of en-
semble methods. They could certainly be enhanced by test-
ing combinations of more systems, optimizing the parame-
ters and implementing more adequate aggregation methods
(Borda’s aggregation method [13] seems rather popular in
the literature, but can certainly be improved upon to merge
recommendation results).

8. CONCLUSION
We have presented a simple and generic formalism based
upon social network analysis techniques: by building once
the projected Users’ and Items’ networks, the formalism al-
lows reproducing a wide range of RSs found in the literature
while also producing new RSs. This unique formalism thus
provides very efficient ways to test the performances of many
different RSs on the dataset at hand to select the most ad-
equate in that case.
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LastFM Item-based User-based

Similarity Support Confidence Asym. Cos (q=1) Asym. Cos (q=5) Jaccard Support Confidence Asym. Cos (q=1) Asym. Cos (q=5) Jaccard
Neighborhood = α=0 α=0.5 α=0 α=0.5 α=0 α=0.5 α=0 α=0.5

1st circle
MAP @ 10 0.145 0.082 0.161 0.157 0.151 0.148 0.082 0.062 0.062 0.050 0.057 0.040 0.042 0.051
Prec @ 10 0.087 0.067 0.087 0.084 0.089 0.076 0.053 0.130 0.130 0.107 0.127 0.083 0.093 0.063
Recall @ 10 0.280 0.188 0.280 0.269 0.283 0.250 0.164 0.208 0.208 0.193 0.203 0.144 0.158 0.200
Users Full Coverage 56.45% 56.45% 56.45% 56.45% 56.45% 56.45% 96.72% 96.66% 96.66% 96.66% 96.66% 87.50% 96.66% 96.72%
Users Partial Coverage 43.00% 43.00% 43.00% 43.00% 43.00% 43.00% 3.28% 3.33% 3.33% 3.33% 3.33% 12.50% 3.33% 3.28%
– Avg. num. of recs. 3.9 3.9 3.9 3.9 3.9 3.9 3.8 9.0 9.0 9.0 9.0 7.3 9.0 4.8
Items coverage 0.92% 1.13% 0.96% 1.06% 0.96% 1.03% 22.97% 4.75% 4.75% 5.42% 5.25% 4.71% 5.82% 10.32%
– Proportion in Head 100% 100% 100% 100.00% 100.00% 100.00% 60% 99.33% 99.33% 94.66% 96.00% 93.27% 94.00% 95.20%
– Proportion in Tail 0% 0% 0% 0% 0% 0% 40% 0.66% 0.66% 5.33% 4.00% 6.72% 6.00% 4.79%
Computation time 0:05:00 0:05:00 0:05:00 0:05:00 0:05:00 0:05:00 0:05:00 0:05:00 0:05:00 0:05:00 0:05:00 0:05:00 0:05:00 0:05:00

MovieLens1M Item-based User-based

Similarity Support Confidence Asym. Cos (q=1) Asym. Cos (q=5) Jaccard Support Confidence Asym. Cos (q=1) Asym. Cos (q=5) Jaccard
Neighborhood = α=0 α=0.5 α=0 α=0.5 α=0 α=0.5 α=0 α=0.5

1st circle
MAP @ 10 0.127 0.091 0.133 0.154 0.144 0.144 0.168 0.097 0.084 0.093 0.075 0.129 0.088 0.062
Prec @ 10 0.172 0.151 0.182 0.208 0.196 0.203 0.224 0.225 0.209 0.203 0.175 0.239 0.191 0.130
Recall @ 10 0.133 0.104 0.141 0.159 0.148 0.150 0.166 0.033 0.031 0.030 0.025 0.032 0.027 0.119
Users Full Coverage 99.16% 99.16% 99.16% 99.16% 99.16% 99.16% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Users Partial Coverage 0.84% 0.84% 0.84% 0.84% 0.84% 0.84% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
– Avg. num. of recs. 5.0 5.0 5.0 5.0 5.0 5.0 - - - - - - - -
Items coverage 1.70% 13.43% 1.92% 4.42% 2.48% 5.85% 13.55% 4.36% 4.39% 3.99% 4.08% 2.75% 4.08% 5.45%
– Proportion in Head 100% 100% 100% 100% 100% 100% 98% 96% 96% 95.63% 95.00% 100.00% 95.00% 99.73%
– Proportion in Tail 0% 0% 0% 0% 0% 0% 2% 4% 4% 4.38% 5.00% 0.00% 5.00% 0.27%
Computation time 0:05:00 0:05:00 0:05:00 0:05:00 0:05:00 0:05:00 0:15:00 0:05:00 0:05:00 0:05:00 0:05:00 0:05:00 0:05:00 0:30:00

Flixster Item-based User-based

Similarity Support Confidence Asym. Cos (q=1) Asym. Cos (q=5) Jaccard Support Confidence Asym. Cos (q=1) Asym. Cos (q=5) Jaccard
Neighborhood = α=0 α=0.5 α=0 α=0.5 α=0 α=0.5 α=0 α=0.5

1st circle
MAP @ 10 0.079 0.074 0.080 0.084 0.105 0.096 0.078 0.124 0.107 0.157 0.141 0.157 0.134 0.041
Prec @ 10 0.100 0.096 0.102 0.104 0.119 0.117 0.086 0.279 0.250 0.279 0.250 0.318 0.250 0.069
Recall @ 10 0.113 0.097 0.115 0.112 0.126 0.117 0.156 0.005 0.005 0.005 0.005 0.006 0.005 0.168
Users Full Coverage 71.10% 71.10% 71.10% 71.10% 82.31% 71.10% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Users Partial Coverage 28.90% 28.90% 28.90% 28.90% 17.69% 28.90% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
– Avg. num. of recs. 2.4 2.4 2.4 2.4 3.6 2.4 - - - - - - - -
Items coverage 0.29% 0.43% 0.29% 0.39% 0.29% 0.39% 18.01% 0.26% 0.27% 0.25% 0.25% 0.24% 0.25% 6.60%
– Proportion in Head 100% 100% 100% 100% 100% 100% 95.46% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 99.69%
– Proportion in Tail 0% 0% 0% 0% 0% 0% 4.54% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.31%
Computation time 0:05:00 0:05:00 0:05:00 0:05:00 0:05:00 0:05:00 43:00:00 0:10:00 0:10:00 0:10:00 0:10:00 0:10:00 0:10:00 112:00:00

MSD Item-based User-based

Similarity Support Confidence Asym. Cos (q=1) Asym. Cos (q=5) Jaccard Support Confidence Asym. Cos (q=1) Asym. Cos (q=5) Jaccard
Neighborhood = α=0 α=0.5 α=0 α=0.5 α=0 α=0.5 α=0 α=0.5

1st circle
MAP @ 10 0.135 0.134 0.135 0.134 0.135 0.134 0.078 0.054 0.054 0.052 0.053 0.049 0.049 0.028
Prec @ 10 0.042 0.042 0.042 0.042 0.042 0.042 0.059 0.090 0.090 0.089 0.090 0.083 0.084 0.038
Recall @ 10 0.175 0.175 0.175 0.175 0.175 0.175 0.166 0.178 0.178 0.175 0.178 0.168 0.166 0.116
Users Full Coverage 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.58% 99.01% 99.01% 99.01% 0.990 97.37% 0.990 86.70%
Users Partial Coverage 100.00% 100% 100% 100% 100% 100% 0.42% 0.99% 0.99% 0.99% 0.99% 2.63% 1.01% 13.30%
– Avg. num. of recs. 1.9 1.9 1.9 1.9 1.9 1.9 5.1 7.0 7.0 7.0 7.0 6.4 7.0 2.9
Items coverage 0.0012% 0.0012% 0.0012% 0.0013% 0.0013% 0.0012% 46.30% 7.81% 7.81% 8.74% 8.50% 8.94% 9.33% 23.37%
– Proportion in Head 100% 100% 100% 100% 100% 100% 78% 97.83% 97.84% 97.56% 97.62% 97.24% 97.39% 95.80%
– Proportion in Tail 0% 0% 0% 0% 0% 0% 22% 2.17% 2.16% 2.44% 2.38% 2.76% 2.61% 4.20%
Computation time 0:10:00 0:10:00 0:10:00 0:10:00 0:10:00 0:10:00 3:00:00 13:50:00 14:10:00 12:52:00 12:51:00 13:37:00 13:00:00 7:00:00

Table 5: Performances of Social Filtering (implicit) with 1st circle; Asym. Cos is the abbreviation for Asymmetric Cosine.

Datasets Lastfm Flixster

Similarity Support Confidence Asym. Conf. q=1 Asym. Conf. q=5 Support Confidence Asym. Conf. q=1 Asym. Conf. q=5

Neighborhood = Local α=0 α=0.5 α=0 α=0.5 α=0 α=0.5 α=0 α=0.5
community

SF-IB
MAP @ 10 0.151 0.089 0.151 0.152 0.149 0.152 0.064 0.058 0.066 0.066 0.081 0.081
Prec @ 10 0.080 0.064 0.080 0.076 0.080 0.073 0.079 0.076 0.082 0.080 0.096 0.097
Recall @ 10 0.256 0.198 0.256 0.243 0.256 0.240 0.073 0.065 0.076 0.072 0.083 0.079
Users Full Coverage 51.67% 51.67% 51.67% 51.67% 51.67% 51.67% 80.22% 80.22% 80.22% 80.22% 80.22% 80.22%
Users Partial Coverage 48.33% 48.33% 48.33% 48.33% 48.33% 48.33% 19.78% 19.78% 19.78% 19.78% 19.78% 19.78%
Av. nb of recommendations 4.00 4.00 4.00 4.00 4.00 4.00 3.13 3.13 3.13 3.13 3.13 3.13
Items coverage 0.74% 0.92% 0.74% 0.89% 0.82% 0.85% 0.30% 0.35% 0.30% 0.34% 0.29% 0.34%
Rate-Head 100.00% 100% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Rate-Tail 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Computation time 0:05:00 0:06:00 0:08:00 0:10:00 0:09:00 1:10:00 0:18:00 0:18:00 0:23:00 0:22:00 0:21:00 0:23:00

Table 6: Performances of Social Filtering (implicit) with Local Community.
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Dataset Lastfm Flixster

Perf. Indicator @10 1st circle Community Local Comm. 1st circle Community Local Comm.
SF-UB
MAP @ 10 0.101 0.083 0.078 0.019 0.038 0.016
Prec @ 10 0.074 0.064 0.053 0.037 0.057 0.027
Recall @ 10 0.239 0.182 0.203 0.046 0.093 0.036
Users Full Coverage 80.16% 88.09% 56.52% 84.16% 99.87% 61.45%
Users Partial Coverage 19.84% 11.91% 43.48% 15.85% 0.13% 38.55%
Av. nb of recommendations 4.76 4.66 4.375 3.85 3.2 3.71
Items coverage 13.54% 8.22% 14.25% 8.01% 0.37% 7.96%
Rate-Head 89.93% 93.77% 83.96% 99.53% 100.00% 99.18%
Rate-Tail 10.07% 6.22% 16.04% 0.47% 0.00% 0.82%
Computation time 0:05:00 0:05:00 0:05:00 0:05:00 58:00:00 0:05:00

Table 7: Performances of Social Filtering user-based on explicit networks.

Datasets Lastfm Flixster

Perf. Indicator @10
(CF-IB Cosine, w. average) and

(SF-IB Asym. Conf. q=1, α=0)

(SF-UB Asym. Conf. q=5, α=0) and

(SF-UB Asym. Conf. q=1, α=0)
MAP @ 10 0.160 0.175
Prec @ 10 0.089 0.307
Recall @ 10 0.298 0.006

Users Full Coverage 56.45% 100%
Users Partial Coverage 43.55% 0%

Av. nb of recommendations 3.9 -
Items coverage 0.96% 0.25%
Rate-Head 100% 100%
Rate-Tail 0% 0%

Computation time 0:01:00 0:06:00

Table 8: Ensemble of RSs.

As can be seen from our experiments, there is no unique
silver bullet (so far!): for each dataset, one has to test and
try a full repertoire of candidate RSs, fine tuning hyper-
parameters (a topic we did not address in this paper) and
selecting the best RS for the performance indicator he/she
cares for. The richer the repertoire is, the more chances for
the final RS to get best performances. This theoretical for-
malism thus provides a very powerful way to formalize and
compare many RSs.

In addition, this integrated formalism enables the produc-
tion of modular code, uncoupling the similarities and scor-
ing functions computation steps. It also allows for elegant
implementation of the recommendation engines, as demon-
strated in our published open source code12.

Computing the bipartite network and its projections re-
quires significant computing resources. It can be considered
as a set-up step for our recommender framework. This over-
head is only worth it if one wants to produce an ensemble of
RSs originating from various choices of parameters (similar-
ity measures, neighborhoods and scoring functions) to make
comparisons and select the best choice for the dataset at
hand. In addition, computation of similarities is the bottle-
neck (since obviously it involves all pairs of users or items).
However, some similarity measures (asymmetric confidence
or Jaccard) are more costly than others (support, confidence
and cosine) as the figures about computing time show in the
various tables.

This work opens ways for future research in several direc-
tions:

12https://bitbucket.org/danielbernardes/
socialfiltering

• We have introduced various choices of similarity mea-
sures, neighborhood and scoring functions. Obviously,
more choices can be designed and evaluated;

• Since it is easy to produce many RSs within the same
framework, we could produce collections – or ensem-
bles – of RSs working together to complement each
other weaknesses. More ways for combining recom-
mended lists will be needed to improve upon the Bor-
da’s mechanism discussed here. Inspiration from the
literature on ensemble of rating-based RSs could cer-
tainly be useful.

• Since implicit and explicit social networks can be set
into the same framework, further investigation is re-
quired on how to integrate implicit and explicit net-
works, thus producing hybrid Social recommenders;

• Recent work13 allowing to merge user-based and item-
based CF seem promising, and could certainly be fra-
med into our formalism;

• The first phase in our formalism consists in projecting
the Users and Items network. This step is computa-
tionally heavy. Hence, at the present time we cannot
process extremely large datasets, such as for exam-
ple in the MSD challenge. We thus intend to opti-
mize our implementation of the Social Network pro-
jection. More generally, our code could be ported to
distributed Hadoop-based environments to allow pro-
cessing of larger datasets and parallel testing of the
various hyper-parameters choices.
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