
Citation: Zhu, T.; Fournier-S’niehotta,

R.; Rigaux, P.; Travers, N. A Framework

for Content-based search in Large

Music Collections. Big Data Cogn.

Comput. 2022, 1, 0. https://doi.org/

Received: 7 October 2021

Accepted:

Published:

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Submitted to Big Data Cogn. Comput.

for possible open access publication

under the terms and conditions

of the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Framework for Content-based Search in Large Music
Collections
Tiange Zhu 1, Raphaël Fournier-S’niehotta 1 , Philippe Rigaux 1 and Nicolas Travers 2,1

1 CEDRIC Laboratory, CNAM Paris, France;
tiange.zhu@lecnam.net, fournier@cnam.fr, philippe.rigaux@cnam.fr

2 Léonard de Vinci Pôle Universitaire, Research Center, Paris La Défense, France ; nicolas.travers@devinci.fr
* Correspondence: tiange.zhu@lecnam.net (T.Z.); nicolas.travers@devinci.fr (N.T.)
† This paper is an extended version of our paper published in ISMIR19.

Abstract: We address the problem of scalable content-based search in large collections of music 1

documents. Music content is highly complex and versatile, and presents multiple facets that can be 2

considered independently or in combination. Moreover, music documents can be digitally encoded 3

in many ways. We propose a general framework for building a scalable search engine, based 4

on i) a music description language which represents music content independently from a specific 5

encoding, ii) an extendible list of feature-extraction functions and, iii) indexing, searching and ranking 6

procedures designed to be integrated into the standard architecture of a text-oriented search engine. 7

As a proof of concept, we also detail an actual implementation of the framework for searching in large 8

collections of XML-encoded music scores, based on the popular ElasticSearch system. It is released as 9

open-source in GitHub, and available as a ready-to-use Docker image for communities that manage 10

large collections of digitized music documents. 11

Keywords: Music collections; Digital music encoding; Music Information Retrieval; Scalable and 12

content-based Search 13

1. Introduction 14

Search engines have become essential components of the digital space. They help to 15

explore large and complex collections by retrieving ranked lists of relevant documents 16

related to a query pattern. They rely on scalable indexing structures and algorithms that 17

allow instant response to queries for web-scale collections [1]. Notable successes have been 18

obtained for text-based documents, and extended to multimedia collections [2–4]. 19

Compared to other media (text, image or even video), the research on content-based 20

music information retrieval presents some specific challenges. Musical content is intricate, 21

and hard to describe in natural and intuitive terms. Temporal aspects (tempo, metric, 22

synchronisation) are a major source of complexity that complicate attempts to provide 23

a synthetic representation. Moreover, musical contents are extremely versatile: from 24

improvisation to highly constrained forms, from a single performer to a whole orchestra, 25

from classical to popular music, there exists a wide range of facets that yield a boundless 26

number of genres, styles and forms. Last but not least, periods and locations (of composition 27

or interpretation) are other important aspects that increase the variability of the material. 28

Finally, when it comes to digital representations, one is confronted to highly diverse 29

encoding paradigms. The audio format is the most common. It usually contains recordings 30

of studio or live performances, and constitutes the basis of digital music markets, particu- 31

larly with the advent of streaming distribution. On the other hand, symbolic representations 32

aim at a structured description of musical pieces. The MIDI format encodes information 33

related to the production of sound by a MIDI device [5]. Music notation is the most elab- 34

orated way of describing music at this symbolic level [6]. It has been traditionally used 35

for engraving musical scores [7], but, since the advent of digital encodings such as the 36
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**kern format [8] or XML-based variants (MusicXML [9], its next generation MNX [10], or 37

MEI [11,12]), music notation can also be seen as a support for music information processing. 38

**kern is for instance explicitly designed as a digital encoding of scores that feeds the music 39

analysis modules of the Humdrum toolkit [13]. Large collections of digitally codified music 40

scores are now available, either as results of long-running academic efforts [14,15], or as 41

a side-effect of the generalized production of music scores with editing softwares that 42

encode their documents in one of the above-mentioned formats (e.g., MuseScore [16]). Such 43

collections are examples of datasets where the music content is described in a structured 44

and well-organized way, apt at supporting sophisticated computer-based operations. 45

To the best of our knowledge, however, most existing search tools for large music 46

collections highly rely on metadata. This is the case for search engines incorporated in music 47

streaming services like Deezer or Spotify [17], and for renowned digital music databases like 48

Discogs [18] and AllMusic [19]. Musixmatch [20] allows lyrics search with access to libraries 49

of major music streaming platforms. Shazam [21] allows searching audio recordings by 50

indexing the fingerprints of files, and its result are therefore highly dependent on the 51

specificities of audio music encoding. SoundHound [22] offers a Query by Humming [23] 52

functionality that relies on the measurement of melodic similarity, thus it cannot search 53

other aspects of music. The few approaches that address search operations applied to 54

symbolic representation propose an exhaustive scan of the digital encoding, such as for 55

instance the Humdrum tools based on Unix file inspections [13] or the search methods 56

incorporated in the Music21 toolkit [24]. They do not scale to very large music datasets. 57

We expose in the present paper the design of a general framework for scalable content- 58

based search in large digital collections of music documents. Here, scalable means a sub- 59

linear search complexity, delivering very fast response time even in the presence of very 60

large collections; search operations are content-based because they rely on a structured 61

representation of music inspired by music notation principles, and can thus refer to specific 62

aspects of a music document (e.g., a melodic pattern in the violin part of a symphony); and 63

finally our design addresses digital music documents, independently from a specific music 64

representation, thanks to an intermediate step that extracts the structured content upon 65

which all index/search/rank operations are based. 66
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Figure 1. Overview of the architecture of our music search framework. Digital music documents
(bottom left) undergo a series of transformations and are finally ranked according to a search pattern.
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The proposed design is summarized in Figure 1. Initially, we deal with a large 67

collection of digital music documents in audio, symbolic or other formats. A first step 68

processes these documents by extractors, in order to obtain a structured representation, 69

called music content descriptor, complying with a Music Content Model (MCM). We enter 70

then in a more classical information retrieval workflow. First, features are produced from 71

each descriptor. This step is akin to the pre-processing operations in standard text-based 72

Information Retrieval (e.g., tokenization, lemmatization, etc.) adapted to the characteristics 73

of music representation. Those features must be encoded in a way that is compatible with 74

functionalities of the core information retrieval modules: indexing, searching and ranking. 75

Given a query pattern, they cooperate to deliver a ranked list of matching documents. The 76

last step of this IR workflow identifies all the fragments of the retrieved document that 77

match the query pattern, called pattern occurrences. This step is necessary for highlighting 78

the matching patterns in the user interface. 79

We further position our work with respect to the state of the art in Section 2, and 80

expose then our main contributions: 81

• A Music Content Model, or MCM (Section 3). It borrows from the principles of music 82

notation, reduced to the aspects that are independent from presentation purposes 83

(i.e., ignoring staves, clefs, or other elements that relate to the layout of music scores). 84

Although strongly influenced by the Western music tradition, we believe that this 85

model is general enough to represent a large part of the currently digitized music. We 86

call Music Content Descriptor (MCD) a description of a music document according to 87

this model. The model supports some major functionalities of a search engine, namely 88

transformations corresponding to the classical linguistic operations in text-based search 89

engines, and ranking. 90

• A set of features that can be obtained from a MCD thanks to the above-mentioned 91

transformations. The features set presented in the current work (Section 4) is by 92

no way intended to constitute a final list, and the framework design is open to the 93

addition of other features like harmony, texture or timbre. 94

• The design of the core modules of a search engine, based on these features and 95

dedicated to music retrieval (Section 5). They consist in indexing, searching, ranking, 96

and on-line identification of fragments that match the query pattern. 97

• An actual implementation (Section 6), dedicated to XML-encoded musical scores’ 98

collections, that shows how to integrate these modules in a standard information 99

retrieval system, with two main benefits: reduction of implementation efforts, and 100

horizontal scalability. 101

Finally, Section 7 concludes the paper and lists some future extensions. 102

2. Related Work 103

Our approach relies on an abstract music content model. It consists of a tree-based 104

decomposition of a music score that reflects its temporal organization. This draws heavily 105

from [25–27], which introduced into the Music Information Retrieval literature some ideas 106

and tools from the fields of databases systems and computer linguistics (e.g., hierarchical 107

decomposition of musical content and context-free grammars). Recently, [28] used a similar 108

graph-based representation to study music similarity. 109

The process that extracts instances of our model from digital music documents depends 110

on their specific representation. Automatic Music Transcription (AMT) applies to audio files 111

(e.g., either pulse-code modulation representation, or (un)quantized-MIDI) and produces 112

symbolic data (generally quantized MIDI). Most of AMT methods nowadays use machine 113

learning approaches [29,30], and deliver satisfying results in limited cases (mostly, monodic 114

inputs). Research currently focuses on the difficult problem of polyphonic transcription. 115

Optical Music Recognition (OMR) is an active field of research that studies tools and methods 116

to extract music notation from an image (e.g., a scan of a musical score) [31–33]). The 117

quality of the results is highly dependent on that of the input image, but significant success 118

have been obtained recently [34], event for degraded inputs (e.g., manuscripts). Finally, 119
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the simplest content extraction situation comes when the digital document is itself in a 120

structured format (whether **kern, MusicXML, or MEI), in which case a standard parsing 121

followed by convenient filtering and structuring steps is sufficient. 122

Textual encoding of symbolic music representation is an attractive idea in order 123

to use text algorithms. The HumDrum toolkit [35] relies on a specialized text format 124

and adapts Unix file inspection tools for music analysis. Exact and approximate string 125

matching algorithms for melody matching have also been used in ThemeFinder [36,37] or 126

Musipedia [38]. Text-based operations raise the problem of independence with respect to 127

the physical content encoding: it is a widely admitted principle, in the community that the 128

result on text of a query should not be tied to a specific representation, but rather defined 129

with respect to a “logical” data model. We proposed such a model in [39–41], and the 130

design presented in the present paper relies on such a high-level representation. 131

Ranking musical pieces according to their relevance with respect to a query pattern is an 132

essential part of an information retrieval system. In the MIR community, extensive studies 133

have been devoted to music similarity over the last decades, with the goal of obtaining 134

robust computational methods for evaluating the likeness of two musical sequences [42]. A 135

major problem is that similarity judgments are highly dependent on both the particular 136

aspects being compared and on the user taste, culture, and experience [43,44]. A recent 137

survey [45] summarizes the recent trends observed in the SMS track of the MIREX competi- 138

tion. Our work proposes well-established similarity measures, based on edit distances, to 139

support the ranking process. They could easily be replaced in the framework design by 140

other ranking functions, as long as they can be evaluated on our music content descriptors. 141

We believe, in addition, that using a hierarchical representation gives rise to a wider range 142

of possibilities for evaluating similarities, such as for instance adding strong/weak beats as 143

input parameters. 144

Developing search engines dedicated to musical content is a rather emerging topic, 145

because it is only during the last decade that large collections of digital music have been 146

produced and made widely available. [46] is a survey on pioneering works on music 147

information retrieval systems, followed a few years later by a contribution detailing the 148

"specifications and challenges" for Music Search Engines [47]. The Peachnote Music Ngram 149

Viewer [48] was then developed, relying like our approach on n-grams and a symbolic input 150

(with a piano keyboard interface), though the description of their method is not detailed. 151

Note that the idea of splitting musical sequences in n-grams has been experimented in 152

several earlier proposals [49–52], although not in the context of indexing. Other projects, 153

like Probado or Vocalsearch, seem to have shared some features with our framework, but 154

most of their details are no longer available. Modulo7 [53] is a promising search engine 155

(currently under development), also offering an abstract representation of the music content. 156

An index structure based on n-grams is described in [54], and extended in [55] with ranking 157

procedures. The present paper further extends [55] with a full study that addresses all 158

the aspects of the envisioned framework, along with a complete and publicly available 159

implementation. 160

3. The Music Content Model 161

We now present the Music Content Model (MDM) which relies heavily on principles 162

taken from music notation, seen as an expressive formal language that provides a powerful 163

basis for modeling music content. The MDM gives an abstract vision of digital music docu- 164

ments as structured objects, and supports indexing and search functionalities developed in 165

the forthcoming sections. 166

To state it in a nutshell, we model music information as a mapping from a structured 167

temporal domain to a set of value domains, and call music descriptor a representation of this 168

mapping as a structured object. The temporal domain is a hierarchical structure, called 169

rhythmic tree, that partitions a finite time range in non-overlapping intervals. Each interval 170

corresponding to a leaf of the rhythmic tree is associated to an atomic music event. The 171

mapping therefore associates to each such interval the event value, taken from a domain 172
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which can be the domain of sounds, of syllables, or actually any domain that makes sense 173

with respect to music description concerns: intensity, timbre, texture, or high-level concepts 174

obtained from music analysis. 175

We start with the main domain of interest, the domain of sounds, and continue 176

with the definition of music descriptors, along with the main operations. The model is 177

illustrated with a first example: the German anthem, Das Lied der Deutschen, whose music 178

was composed by Joseph Haydn in 1797 [56]. The notation of this example is shown on Fig. 2. 179

Note that in the presentation that follows, we introduce the basic material from music 180

theory, necessary and sufficient to understand the rationale of our design. References to 181

authoritative sources are given for the interested reader. 182

� � ��� �� � � �� � � ��� � � � ��
Figure 2. First notes of the German anthem, Das Lied der Deutschen by Joseph Haydn (1797).

3.1. The Domain of Sounds: Pitches and Intervals 183

The main domain to consider is that of sounds. A sound can be characterized by 184

many properties, including intensity, timbre and frequency [57]. We only consider the 185

characterization of sounds by their frequency in the modeling of our domain. 186

In the language of music notation, the frequency ranges approximately from 20 to 187

20,000 Hz. In Western music, a finite set of frequencies, or pitches [58], is used to refer to the 188

sounds usable in a musical piece. We follow the designation of the International Standards 189

Organization (ISO) for enumerating the pitches. In this designation, each pitch is referred 190

to by a pitch class P (a letter A, B, C, D, E, F, or G) [59], an index I in [1, 7], and an optional 191

accidental a in {♯, ♭}. One obtains a set of pitch symbols of the form P[a]I. 192

Graphically (i.e., in music scores), frequency levels are materialized by groups of 193

horizontal lines (called staves) and pitches are represented by black or white heads vertically 194

positioned on staves. The first pitch in the score of Fig. 2 is a C4, followed by a D4, an E4, 195

etc. Music is also made of silences (or rests), and we thus add the rest symbol r to the domain. 196

The German anthem starts with a rest, graphically represented by a small rectangle. 197

Finally, a sound can be represented by one or several consecutive pitches, representing 198

the same frequency level, which is then “tied” (graphically represented as curves over the 199

heads, such as in the first measure of Fig. 2), we add the continuation symbol _ to our domain. 200

We obtain the domain of musical symbols. 201

Definition 1 (Domain of musical symbols). The domain Mus of musical symbols consists of: 202

1. The set of pitch symbols P[a]I, P ∈ {A, B, C, D, E, F, G}, a ∈ {♯, ♭}, I ∈ [1, 7], 203

2. The rest symbol, noted r, 204

3. The continuation symbol, noted _ . 205

We will need some derived notions in our model. An interval is a distance between 206

two pitches [60], physically characterized by the ratio of their respective frequencies. A 207

ratio of 1 denotes a unison, a ratio of 2 an octave. The octave is the fundamental interval 208

that structures symbolic music representation. Indeed, a pitch class contains all the pitches 209

that are one or several octaves apart from one another: A4 is one octave above A3, and 210

one octave below A5. The second component of a pitch designation, the index I, refers to 211

a specific octave in the whole frequency range. The ISO standard assumes seven octave 212

ranges numbered from 1 to 7. 213

In Western music notation, an octave range is divided in 12 semi-tones. This defines 214

a scale, called chromatic, with 12 steps, corresponding each to exactly one semi-tone. The 215

definition of chromatic intervals is therefore based on the number of semi-tones between the 216

two pitches. 217
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Another scale, called diatonic relies on the identification of 7 “natural” pitches [61] 218

within and octave. Octave 4, for instance, contains the (natural) pitches {A4, B4, C4, D4, E4, 219

F4, G4}. In the diatonic perspective, the twelve chromatic pitches are obtained by altering 220

the natural ones. An alteration either adds (symbol ♯) of subtracts (symbol ♭) a semi-tone. 221

Therefore A♯4 is one semi-tone above A4, and B♭4 one semi-tone below B4. 222

In the diatonic perspective, the distance between two pitches is nominal and based 223

on the number of steps between the pitches in the diatonic scale, regardless of possible 224

alterations. One obtains unisons (0 steps), seconds (1 step), thirds (2 steps), etc. The list of 225

interval names (lower than an octave) is {unison, second, third, f ourth, f i f th, sixth, seventh, 226

octave}. 227

To summarize, we can (and will) consider two definitions of intervals: 228

• A chromatic interval is the number of steps, negative (descending) or positive (ascend- 229

ing), in the chromatic scale, between two pitches. 230

• A diatonic interval is a nominal distance measuring the number of steps, descending or 231

ascending, in the diatonic scale, between two pitches. 232

Diatonic and chromatic intervals are partially independent from one another: if we 233

take two pairs of pitches, they might coincide in terms of their respective diatonic intervals, 234

and differ on the chromatic ones, and conversely. Searches interpreted with respect to 235

either of those two concepts gives distinct results. 236

3.2. Music Content Descriptors 237

We model music is a temporal organization of sounds inside a bounded time range. 238

Notes cannot be assigned to any timestamp but fall on a set of positions that defines a 239

discrete partitioning of this range. More precisely, this partition results from a recursive 240

decomposition of temporal intervals, yielding a rhythmic organization which is inherently 241

hierarchical. 242

In Western music notation, a music piece is divided in measures (graphically repre- 243

sented as vertical bars on Fig. 2), and a measure contains one or more beats. Beats can 244

in turn be divided into equal units (i.e., sub-beats) [62,63]. Further recursive divisions 245

often occur, generating a hierarchy of pulses called metrical structure. The time signature, 246

a rational number (in our example, 4/4) determines the preferred decomposition. A 4/4 247

measure consists of 4 beats, and each beat is one quarter (graphically, a black note ˇ “ ) long. 248

Still in the context of a 4/4 time signature, the preferred decomposition of a measure, is 249

into 4 sub-intervals (some other partitions are possible, although less likely), beats are 250

preferably partitioned in two quavers (graphically, a ˇ “( ), themselves (generally) partitioned 251

in semi-quavers ( ˇ “) ), etc. 252

For other meters (e.g., 3/4, 6/8), temporal decomposition follows different patterns. 253

In all cases, the rhythmic decomposition rules can be expressed in a well-known formal 254

language, namely Context-Free Grammars (CFG). In order to express decomposition prefer- 255

ences, they can be extended to Weighted Context-Free Grammars [26]. As an illustration, the 256

following grammar G = (V, Mus, R, S) is sufficient to model the rhythmic organization of 257

our example, with time signature 4/4. The set of non-terminal symbols is V = {S, m, b, q}, 258

where S (the initial symbol) denotes a whole music piece, m a measure, b a beat and q a 259

quaver. The terminal symbols belong to Mus, the set of music symbols (Def. 1), and R is 260

the following set of rules: 261

1. R0 : S→ m|m, S (a piece of music is a sequence of measures) 262

2. r1 : m→ b, b, b, b (a measure is decomposed in four quarter notes / beats) 263

3. r2 : b→ q, q (a beat is decomposed in two quavers / eighth note) 264

4. A setRm of rules Rv
e : v→ e where e ∈Mus is a musical symbol. 265

Rule R0 and the set Rm together determine the temporal structure of music: i) a 266

time range in divided in equal-sized measures, and ii) events only occur at timestamps 267

determined by a parse tree of the grammar. Unambiguous grammars that feature R0 and 268

Rm are called music content grammars in the following. Given a music content grammar, we 269
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can use its rules to build a hierarchical structure (a parse tree) that models the rhythmic 270

organization of a sequence of musical events. 271

Definition 2 (Monodic content descriptor). Let G = (V, Mus, R, S) be a music content gram- 272

mar. A (monodic) content descriptor is a parse tree of G. The inner nodes constitute the rhythm 273

tree, and the leaves are the (musical) events. 274

s

m m m

b b b b b b b b b

q q

…

R0 R0

!!!!!! !!"# $ !!
C5_ _ D5 E5 D5 F5 E5 D5 B5 C5

q q

r1

b

r

The rhythmic tree R

Events 

r2

Figure 3. The content descriptor for the German anthem, with its events and the rhythmic tree.

Figure 3 shows the content descriptor of the initial measures of the German anthem. 275

From a content descriptor it is easy to infer the following properties that will serve as a 276

basis for the indexing process: pitch sequence, temporal partition, and event sequence. 277

Definition 3 (Pitch sequence). Let D be a content descriptor. The sequence of leaf nodes values in 278

D is a string in Mus∗ called the pitch sequence of D and noted PSeq(D). 279

Given a time range I, a content descriptor D defines a partitioning of I as a set of 280

non-overlapping temporal intervals defined as follows. 281

Definition 4 (Temporal partition). Let I = [α, β[ be a time range and D a content descriptor. 282

The temporal partitioning P(I, D) of I with respect to D is defined as follows. Let N be a node in 283

the rhythmic tree of D (recall that the rhythmic tree is D without the leaves level). 284

1. If N has no children, P(I, N) = {I} 285

2. If N is of the form N(N1, · · · , Ni), I is partitioned in n sub-intervals of equal size s = β−α
n 286

each: P(I, N) = {I1, · · · , In} with Ii = [α + (i− 1)× s, α + i× s] 287

This partitioning associates to each internal node N of a content descriptor a non- 288

empty interval denoted itv(I, N) in the following and a duration denoted dur(I, N). Each 289

event (leaf node) covers the time interval of its parent in the rhythmic tree. 290

We will adopt the following convention to represent temporal values: the duration of 291

a measure is 1, and the music piece range is n, the number of measures. Both the duration 292

and interval of a node result from the recursive division defined by the rules. The duration 293

of a half note for instance is 1
2 , the duration of a quaver is 1

4 , etc. The duration of a leaf node 294

(event) is that of its parent in the rhythmic tree. 295

One can finally obtain the event sequence by combining both information. 296
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Definition 5 (Event sequence). Let D be a content descriptor and [L1, · · · , Ln] be the pitch 297

sequence of D. Then the sequence [(L1, dur(L1)), · · · , (Ln, dur(Ln))] where we associate to each 298

leave its duration is the event sequence of D, denoted ESeq(D). 299

Each element in ESeq(D) associates a symbol from Mus and a duration. One obtains 300

the sequential representation commonly found in music notation. An explicit representation 301

of the hierarchical structure is, however, much more powerful than the sequential one. We 302

can use the tree structure for various simplifications, compute similarity measures (see 303

below), or infer strong or weak timestamps from their corresponding branch in the tree. 304

More generally, this general framework allows deriving features from content descriptors 305

by extracting, transforming, normalizing specific aspects pertaining to rhythm, domain 306

values, or both. 307

3.3. Non-Musical Domains 308

This modeling perspective can be extended to other value domains beyond the class of 309

music symbols. Consider the example shown on Fig. 4, the same German anthem enriched 310

with lyrics. We can model this mixed content with two content descriptors over distinct 311

values domains (i.e., terminal symbols sets). The first is derived from a grammar where 312

terminal symbols taken from Mus, as before, and the second one taken from syllables. 313

� �
Welt

��
les

�
in

�
der

� �
landDeutsch

�
Deutsch

�
ü

�
ber

�
al

�� � �
land

�
Ü

�
ber

�
al

� �
les

Figure 4. The German anthem, with lyrics associated with the music.

The content descriptor for the lyrics part might be different from that of the melodic 314

part (Fig. 5). Indeed, a same syllable may extend over several notes (a feature called melism, 315

see ’al–les’ Fig. 5). Less commonly, but also possible, several syllables may be sung on a 316

single note. 317

s

m m m

b b b bb b b b b

…

r1 r1

Deu_ _ land berDeutsch land ü al les

q q

r2

b

r

! !
les

!
al

!
land

!!
Deutsch Deutsch

!"# $
ber

!
ü

!
land

!

Figure 5. The content descriptor of the syllabic part of the German anthem.

This generalized model therefore covers any mapping of a time range structured by 318

a CFG to a value domain: we illustrated it so far with pitches and syllables, but chords, 319

textures, or other types of annotation can fit in this framework. 320

3.4. Polyphonic Music 321

So far we only considered monodic music (a single flow of events). The representation 322

of polyphonic music simply consists of a set of monodic content descriptors sharing a same 323

grammar. 324
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Definition 6 (Polyphonic content descriptor). Given a music content grammar G, a (poly- 325

phonic) content descriptor is a set of parse trees of G such that the number of derivations of rule 326

R0 (in other words, the number of measures) is constant. 327

Fig. 6 gives an illustration (the same theme, with a bass part added). In terms of music 328

content, it can be represented by two content descriptors derived from the same grammar, 329

and with the same number of measures. Synchronization properties (the fact for instance 330

that the time range of two events overlap) can easily be inferred. Harmonic features (e.g., 331

chord names) could therefore be obtained from the content descriptors, and added to the 332

framework. The same holds for musical properties such as, e.g., timbre [64] or texture [65], 333

as long as they can be modeled and derived computationally. 334
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Figure 6. German anthem, with two voices.

From now on, we will assume that a polyphonic descriptor can be obtained from 335

every music document (we refer to Section 6 that describes our implementation, and to 336

the state-of-the-art in Section 2). Content descriptors constitute the input for the features 337

production described in the next section. A generalization to polyphonic descriptors as sets 338

of features is immediate. 339

4. Offline Operations: Features and Text-Based Indexing 340

We now present a list of features that can be produced from a music content descriptor: 341

a chromatic interval feature (CIF), a diatonic interval feature (DIF), a rhythm feature (RF), 342

and a lyric feature (LF). This list is not closed. As explained above, features pertaining to 343

other aspects of music representation (e.g., harmonic) or features obtained from an analytic 344

process may be added, as long as they can be derived from our description model. 345

The features presented below are designed to be integrated in a text-based search 346

engine. This requirement is motivated by easiness of implementation. Should a multimedia 347

search engine be available off-the-shelf with metric-based access methods (for instance 348

multidimensional search trees [2]), this constraint could be relaxed. Each feature type must 349

therefore fulfill the following requirements: 350

• There exists an analyzer that takes a content descriptor as input and produces a feature 351

as output. 352

• There must exist a serialization of a feature as a character string, which makes possible 353

the transposition of queries to standard text-based search supported by the engine. 354

• Finally, each feature type must be equipped with a scoring function that can be incorpo- 355

rated into the search engine for ranking purposes. 356

We will use the famous song My way [66] as an example to illustrate our features (see 357

Fig. 7). The song is the English version of the French song Comme d’habitude [67], written by 358

Claude François and Jacques Revaux (1967). The English lyrics are by Paul Anka (1969). 359

Figure 7. Main example (My way, first phrase)

The content descriptor of this fragment is illustrated by Fig. 8. 360
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Figure 8. Content descriptor of My way

4.1. Chromatic interval feature 361

The feature analyzer ACIF relies on the following simplification of a pitch sequence: 362

1. All repeated values from PSeq(D) are merged in a single one. 363

2. Rest and continuation symbols are removed. 364

One obtains a simplified descriptor that essentially keeps the sequence of non-null 365

intervals. Fig. 9 shows such a sequence, resulting from the analysis of My way. Note that 366

the two consecutive A4s near the end have been merged, and all rests removed. 367

� �� ��� ��� � �� � ��� �
Figure 9. My way, after the feature extraction by the appropriate analyzer.

Definition 7 (Chromatic Interval Feature). Given a content descriptor D, the chromatic inter- 368

val feature (CIF) ACIF(D) is the sequence of the chromatic intervals values (number of chromatic 369

steps) between two consecutive pitches in the simplification of PSeq(D). 370

When the CIF analyzer ACIF is applied to the sequence of Fig. 9, one obtains the
following feature.

< 9,−9, 9,−2, 2,−9, 9,−2, 2,−2, 2,−2,−1 >

Figure 10. My way, transposed.

It is worth mentioning that we obtain the same CIF from initially distinct music 371

descriptors. Fig. 10 shows a transposed version of My way, more suitable to a female voice 372

(say, Céline Dion rather than Franck Sinatra). The CIF is invariant. The feature is also 373

robust with respect to rhythmic variants. Fig. 11 shows the initial – French – version of 374

the tune, sung by Claude François. The lyrics in French imply a slightly distinct rhythmic 375

structure. However, the sequence of intervals remains identical, and so does the CIF. 376
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Figure 11. French version of My way (Comme d’habitude, first phrase).



Version March 7, 2022 submitted to Big Data Cogn. Comput. 11 of 27

We can therefore conclude that the descriptors shown in Figures 7, 10, and 11 match 377

with respect to their respective chromatic features. The matching of two descriptors is 378

highly dependent on the analyzer. Among other possible features, we could have taken the 379

sequence of pitch names, in which case transposed scores would not match. The precision 380

would likely be higher but we would miss results that seem intuitive. 381

Another feature would accept unisons (i.e., repeated notes yielding intervals with 0 382

semi-tones). Then, in our example, the French version (Fig. 11) would no longer match 383

with the English version of My way. 384

Each analyzer determines a balance between precision and recall. Fig. 12 shows 385

another example of descriptor that matches with the previous ones with respect to the CIF 386

feature. It seems clear that it is quite rhythmically far from the standard tune and that, at the 387

very least, it should not be given the same score in the result set than the previous ones. 388

The ranking function should yield a low similarity factor for such descriptors that match at 389

the value (melodic) level but highly differ at the rhythmic level. We propose such a ranking 390

function in Section 5.3. 391

�� � � � �� � � �� � � � � � � ���� � � � � �� �
Figure 12. My way, rhythmically distorted.

4.2. Diatonic Interval Feature 392

Let us continue with our favorite tune, My Way. We keep the same simplification phase
already used for ACIF. Fig. 13 shows the second phrase, which slightly differs from the first
one. If we compute the chromatic interval feature, one obtains the following sequence:

< 8,−8, 8,−1, 1,−8, 8,−1, 1, 4,−2,−5, 3,−1 >

which is distinct from that of the first phrase (see above). 393
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Figure 13. My way, second phrase.

If we adopt the diatonic perspective, we observe that the second phrase starts with a 394

5-steps diatonic interval (from E4 to C5), continues with a descending one-step (from C5 to 395

B4), etc. Therefore, the first interval of the first phrase and of the second phrase do match 396

in a diatonic interpretation context: they are both sixths, major in the first case, minor in 397

the second one. So does the second interval (a second, minor in the first case, major the 398

second case). We can conclude that both phrases, in the diatonic perspective, are similar, 399

and we introduce the Diatonic Interval Feature to capture this interpretation. 400

Definition 8 (Diatonic Interval Feature). Given a content descriptor D, the diatonic interval 401

feature (DIF) ADIF(D) is the sequence of diatonic interval names between two consecutive pitches 402

in the simplification of PSeq(D). 403

Assuming that the set of interval names is {U(nison), S(e)c(ond), T(hird), Fo(urth),
Fi(fth), Si(xth), Se(venth) and O(ctave)} and that an ascending interval is coded with a +,
a descending one with a −, one may apply this definition to the descriptor of Fig. 9. The
following sequence is obtained:

< Si+, Si−, Si+, Sc−, Sc+, Si−, Si+, Sc−, Sc+, Si−, Si+, Si−, Si− >

The first and second phrases of My way match with respect to this feature, and continue 404

to match with any transposition (Fig. 10) or rhythmic variants (Fig. 11). 405
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4.3. Rhythmic Feature 406

So far we have built the features on the event values associated to the leaves of content 407

descriptors. We now focus on the rhythmic information provided by the rhythmic tree in a 408

music content descriptor. 409

An immediate thought would be to serialize the rhythmic tree using some nested 410

word representation. There are at least two downsides in doing so: 411

1. Rhythmic perception is essentially invariant to homomorphic transformations: dou- 412

bling both the note durations and the tempo results in the same music being played. 413

2. The rhythmic tree provides a very elaborated representation of the rhythmic organiza- 414

tion: putting all this information in a feature would favor a very high precision but a 415

very low recall. 416

As in the case on melodic description, we therefore adopt a simplified rhythmic 417

representation, and resort to the ranking step to favor the result items that are closer to the 418

query pattern. 419

Given a content descriptor R, its temporal partition (see Def. 4) gives the respective 420

durations of the events. Consider once again the first phrase of My way (Fig. 7), ignoring 421

the initial rest. It starts with a quarter note, followed by a half-note: the ratio (i.e., the 422

multiplication to obtain the second duration value from the first one) is 2. Then comes a 423

1-eighth duration, hence a ratio equal to 1
8 , followed by three eight-notes, hence three times 424

a neutral ratio of 1, etc. We adopt the sequence of these ratio as the description of rhythm. 425

Definition 9 (Rhythmic feature). Given a content descriptor D and its leaves [L1, L2, · · · , Ln], 426

the rhythmic feature (RF) ARF(D) is a sequence [r1, · · · , rn−1] such that ri =
dur(Li+1)

dur(Li)
, ∀i ∈ 427

[1, n− 1]. 428

The rhythmic feature of the first phrase of My way (ignoring the initial rest) is

< 2,
1
8

, 1, 1, 8,
1
8

, 1, 1, 8,
1
8

, 1, 1, 8,
1
2
>

4.4. Lyrics Feature 429

The lyrics feature (LF) is the simplest one: it consists of the text of the tune (if any 430

exists). Since the feature contains purely textual information, it is subject to the traditional 431

transformations (tokenization, lemmatization, etc.) operated by search engines. 432

4.5. Text-Based Indexing 433

Each of the previous feature is a (potentially long) sequence of values [v1, v2, · · · , vk]. 434

In order to adapt this representation to the encoding expected by a search engine, we 435

compute the list of n-grams {< vi, · · · , vi+n−1 >, i ∈ [1, k− n + 1]}, where n, the n-gram 436

size, is an index configuration parameter (we use n = 3 in our implementation). If, for 437

instance, the sequence of values is <6,-3,-3,1,2,-2>, the list of 3-grams is [<6,-3,-3>, <-3,- 438

3,1>, <-3,1,2>, <1,2,-2>]. 439

Each n-gram is then encoded as a character string which constitutes a token. These 440

tokens are finally concatenated in a text, separated by white spaces. Some additional 441

encoding might be necessary, depending on the specific restrictions of the search engine, to 442

avoid misinterpretation of unusual characters (for instance, the minus sign can be encoded 443

as m), and value separators in n-grams must be chosen with care. 444

For instance, assuming that i) the character m is substituted to the minus sign, and ii) X 445

is used as a separator, one would submit the following text to the engine: 446

6Xm3Xm3 m3Xm3X1 m3X1X2 1X2Xm2
One obtains a standard textual representation that can be right away submitted to the 447

indexing module of the search engine. 448
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4.6. A Short Discussion 449

So far, we presented a set of features that all relate to the monodic aspect of a music 450

content. Some are mathematically founded (chromatic, rhythm), others are application- 451

dependent (diatonic). They illustrate the design of our search framework as a producer of 452

features derived from a normalized, high-level music content description. They all result in 453

a linear representation, akin to be assimilated to textual data in a standard search engine. 454

Another design choice is to simplify the feature representation so that it favors recall 455

over precision. Since a feature captures only one aspect of the content (either rhythmic, 456

or melodic-based), two descriptions that are close with respect to this aspect, but highly 457

different with respect to another, might match in spite of important differences. The 458

matching-based retrieval is designed as a first step operated to filter out a large part of 459

the collection, and completed with a scoring function (to be described next) that top-ranks 460

relevant music documents. 461

5. Online Operations: (Scalable) Searching, Ranking, Highlighting 462

We now turn to the operations that occur during the query processing phase. Searching 463

operates by applying to the query pattern the same analyzer as those used for the targeted 464

feature. The matching is then computed thanks to the scalable text-search mechanisms 465

supplied by standard text search engines. 466

The difficult part of the process is the ranking of the query result. The default ranking 467

functions of a text-based information retrieval system would yield meaningless results if 468

applied to our features. We therefore define and plug our own set of ranking functions, the 469

description of which constitutes the major part of the present section. 470

5.1. Searching 471

A query pattern q (or pattern in short) is a pair (P, FT) where P is either a content 472

descriptor or a set of keywords, and FT is the feature type (CIF, DIF, RF, or LF – the latter 473

being required when P consists of keywords). In the following, we focus on musical 474

patterns since lyrics can be treated as standard text. 475

Definition 10 (Matching). Let q = (P, FT) be a query pattern, with FT ∈ {CIF, DIF, RF}, 476

AFT be the analyser associated to FT, and D be a content descriptor. Then q matches D if and 477

only if there exists at least one substring F of AFT(D) (called fragment thereafter) such that 478

AFT(P) = F. 479

Assume for instance that the user searches for My way and submits the search pattern
P of Fig. 14 with the feature type CIF. The sequence ACIF(P) is:

< 9,−2, 2,−2 >

which (after n-gram encoding) is a sub-string of the CIF for the descriptors of Fig. 7, 11 480

and 12. 481

� � � ��� �
Figure 14. A pattern, matching a fragment of My way.

Definition 10 extends naturally to polyphonic music: a polyphonic descriptor M 482

matches a query pattern (P, FT) if and only if, for at least a content descriptor D in M, and at 483

least a substring F of AFT(D), AFT(P) = F. The matching fragments are called the matching 484

occurrences of M. 485
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Figure 15. Data organization in a distributed search index and query processing.

5.2. Scalability 486

It follows from the previous definition that the matching operation is natively sup- 487

ported by text-based search engines. Furthermore, carrying out this operation is scalable 488

because it can be processed in parallel over the participating server nodes in a distributed 489

setting. 490

We illustrate the distributed processing with the example of Fig. 15, assuming a dis- 491

tributed setting with three servers. The figure shows four musical document {mc1, mc2, mc3, 492

mc4}. Each document except mc3 is polyphonic, with two monophonic descriptors. Doc- 493

uments are spread on the 3 servers: mc1 on server 1, mc2 on server 2 and {mc3, mc4} on 494

server 3. 495

On each server, for each type of descriptor, there is a list Lng for each indexed n-gram 496

ng: on Fig. 15 we show rectangles for CIF, circles for DIF, triangles for RF and stars for LF. 497

Each list Lng stores, in order, the position of ng in each descriptor of the local documents. 498

For document mc1 for instance, n-gram 5+;3-;2+ appears four times for the first descriptor, 499

and three times for the second one. 500

At search time, the pattern is n-gram encoded as described above, and this encoding 501

is submitted as a phrase queries to the search engine. A so-called “phrase query” retrieves 502

the documents that contain a list of tokens (n-grams) appearing in a specific order. The 503

query is sent to each server, and the servers carry out in parallel the following operations: 504

1) scan the list for each n-gram of the query and retrieve the matching descriptors (here 505

[mc1, 1), (mc1, 2), (mc3, 1), (mc4, 1)]), 2) check that the positions correspond to the n-gram 506

order in the pattern, 3) apply the ranking function locally, and 4) groups descriptors by 507

documents to keep the best score. 508

All these steps, except the last one, operate at the document level and can therefore 509

be processed in parallel on each participating server. The final ranked list is obtained by 510

merging (in time linear in the size of the global result) the local results. 511

5.3. Ranking for Interval-Based Search 512

We first describe the ranking for interval-based features (i.e., Chromatic Interval 513

Feature and Diatonic Interval Feature). Given a set of descriptors that match a pattern P, 514

we now want to sort them according to a score, and rank first the ones that are closest to P. 515

Since matching occurs on the melodic part, we want to rank on the rhythmic one. Referring 516

to the pattern of Fig. 14, fragments from Fig. 7, 11 should be ranked first, whereas that of 517

Fig. 12 should be ranked last because it greatly differs from the formers rhythmically. 518
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We therefore compute a score based on the rhythmic similarity between the query 519

pattern P and the matching subtree(s) in each descriptor of the result set. We base the 520

computation on the following important observation: since the pattern and the descriptor 521

share a common part of their melodic features, they have a similar structure that can be 522

exploited. To state it more formally, since AFT(P) = F, F being a fragment of AFT(D), 523

there exists a sequence of identical non-null intervals in both P and D. Each interval is 524

represented in D or P by a list of events that we call a block. More precisely: 525

Definition 11 (Block). Let F =< I1, · · · , In > be a fragment of AFT(D) for some descriptor D. 526

By definition of the analyzer AFT , each interval Ii, i ∈ [1, n] in F corresponds to a sub-sequence 527

< pi
1, ei

2, · · · , ei
k−1, pi

k > of ESeq(D) such that: 528

• pi
1 and pi

k are two distinct non-rest values, and interval(pi
1, pi

k) = Ii 529

• each ei
l , l ∈ [2, k− 1] is either a rest, or a pitch such that ei

l = pi
1 530

We call Bi =< pi
1, ei

2, · · · , ei
k−1 > the block of I1 in D. 531

The concept of block is illustrated by Fig. 16 for the descriptors of Fig. 7, 11 and 12 532

matching the pattern of Fig. 14. 533
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Figure 16. Blocks, in several fragments matching the pattern displayed in Fig. 14.

If a descriptor D matches a pattern P with respect to a feature type FT ∈ {CIF, DIF}, 534

we can constitute a sequence of pairs (BP
i , BD

i ), i ∈ [1, n] of blocks representing the same 535

part of the melodic query. We can therefore reduce the scoring problem to the evaluation of 536

the rhythmic similarity internal to each pair. 537

Rhythmic similarity is a specific area of computational musicology which have been 538

the subject of many studies [68–70]. A prominent trend is to rely on edit distances [71] 539

applied to rhythms represented as sequences. Since we represent rhythm as trees, we rather 540

use a tree-edit distance that operates on the rhythmic tree part of a music descriptor. 541

A tree-edit distance between two trees T1 and T2 is based on a set of transformations 542

(called “edit operations”), each associated to a cost. The distance is defined as the sequence 543

of transformations from T1 and T2 that minimizes the overall cost. Standard operations are 544

insert (a node), delete (a node) or replace. 545

In our case, we are restricted to the parse trees of the music content grammar G. Any 546

transformation applied to a parse tree must yield a parse tree. We therefore accept the 547

following list of edit operations. 548

1. For children of the root: insert / delete / replace a measure. 549

2. For all other nodes N: either insert a subtree by applying a rule from G to the non- 550

terminal symbol N, or delete the subtree rooted at N. 551

The cost of each operation is the duration of the modified node. The cost of replacing 552

/ inserting / deleting a measure is 1, the cost of inserting / deleting a subtree rooted at a 553
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node labeled h (half note) is 1
2 , etc. Intuitively, the cost of an operation if the duration of the 554

interval modified by the operation: the smaller the modification, the smaller the cost. 555

Definition 12 (Rhythmic similarity). Given two descriptors D1 and D2, the rhythmic similarity 556

Rsim(D1, D2) between D1 and D2 is the tree-edit distance is the minimal cost sequence of parse-tree 557

edit operations that transforms the rhythmic tree of D1 to the rhythmic tree of D2. 558

The rhythmic distance between D1 and D2 is Rdist(D1, D2) = 1− Rsim(D1, D2). 559

Computing the tree-edit distance is usually achieved with a dynamic programming 560

algorithm. The two best known algorithms [72,73] run in time quadratic in the input size. 561

Fig. 17 shows the rhythmic trees for the pattern and the first block of the three matching 562

fragments. The edit operations to obtain the rhythmic tree of the descriptors consist of one 563

node insertion (My way), two insertions (one beat and two quavers, Comme d’habitude), and 564

finally five insertions for My way distorted. 565
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Figure 17. The rhythmic trees for the first block of each descriptor

The ranking function takes as input a pair of descriptors and outputs a score. It 566

computes the alignment of blocks and sums up the distance between their rhythmic trees, 567

obtained by the rhythmic distance Rdist (Def. 12). 568

Algorithm 1 Rhythmic Ranking

1: procedure RHYTHMRANKING(D1, D2)
2: Input: D1, D2, such that AFT(D1)=AFT(D2)
3: Output: a score s ∈ [0, 1]
4: s← 0; < (B1

0 , B2
0), · · · , (B1

n, B2
n) >← getBlocks(D1, D2)

5: for i := 0 to n do ▷ Loop on the pairs of blocks
6: s← s + Rdist(B1

i , B2
i )

7: return s/n

The cost of the getBlocks part is linear in the size of D1 and D2, but computing 569

the tree-edit distance is quadratic. There exists a simplified function that we use in our 570

implementation: it simply cumulates the delta of the block duration within a pair. This 571

simplified version reflects the insertion or deletion of nodes; however it ignores the internal 572

structural changes. Applied to the trees of the pattern and My way distorted for instance, the 573

simplified version does not measure the difference in the first beat (one quaver versus 4 574

repeated 16th-notes). 575
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Algorithm 2 Simplified Rhythmic Ranking

1: procedure SIMPLERHYTHMRANKING(D1, D2)
2: Input: D1, D2, such that AFT(D1)=AFT(D2)
3: Output: a score s
4: s← 0; < (B1

0 , B2
0), · · · , (B1

n, B2
n) >← getBlocks(D1, D2)

5: for i := 0 to n do ▷ Loop on the pairs of blocks
6: s← s + |dur((B1

i )− dur(B2
i )|

7: return s

The running time of the approximate ranking function is linear in the size of the 576

descriptors. 577

5.4. Ranking for Rhythmic-Based Search 578

Let (P,′ RT′) be a query on rhythmic features. A set of descriptors matching with 579

P are retrieved. Since matching occurs on the rhythmic part, we want to sort the result 580

set on their melodic similarity. Our implementation relies on the classical Levenshtein 581

distance [74], as it is one of the most commonly used metrics to measure melody similarity 582

in state-of-the-arts [75]. Note that edit distance is our current choice for this paper, yet the 583

ranking algorithm could be substituted in another version of implementation. 584

Let F1 be the CIF extracted from the query pattern P, and F2 be the CIF extracted from 585

matching parts in the descriptor, and F1
i represents for the ith element in F1, while F2

j refers 586

to the jth element in F2. Thus, the score represents for the cost of converting F2 into F1, with 587

three types of operations: deletion, insertion, and replacement. Since that each operation 588

edits only one element in a CIF sequence, the alignment cost are all considered as 1. 589

The alignment cost of converting the sequence of first i elements of F1 into the sequence 590

of first j elements of F2 is: 591

aligncost(F1
i , 0) = i if 1 ≤ i ≤ n

aligncost(0, F2
j ) = j if 1 ≤ j ≤ m

aligncost(F1
i−1, F2

j−1) if F1
i = F2

j

aligncost(F1
i , F2

j ) = min


aligncost(F1

i−1, F2
j ) + 1

aligncost(F1
i , F2

j−1) + 1

aligncost(F1
i−1, F2

j−1) + 1

if F1
i ̸= F2

j (1)

If there are n elements in F1 and m elements in F2, the score is align(F1
n , F2

m). The final 592

score is divided by n to normalize to the range [0, 1]. 593
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Algorithm 3 Interval-based Ranking

1: procedure ITVRANKING(F1, F2)
2: Input: F1, F2 ▷ A pair of CIF
3: Output: a score s ∈ [0, 1]
4: for i := 0 to n do ▷ Loop on the elements of F1
5: for j := 0 to m do ▷ Loop on the elements of F2
6: if i = 0 then
7: cost[i, j]← j;
8: else if j = 0 then
9: cost[i, j]← i;

10: else if F1[i− 1] = F2[j− 1] then
11: cost[i, j]← cost[i− 1, j− 1];
12: else
13: cost[i, j]← 1 + min(cost[i− 1, j], cost[i, j− 1], cost[i− 1, j− 1]);
14: return cost[n, m]/n

5.5. Finding Matching Occurrences 594

Once matching descriptors have been extracted from the repository, it is necessary 595

to identify the sequences of events that match the pattern. Since both the pattern P and 596

the feature are encoded as n-grams, the matching operator is able to return the sequence 597

of n-grams in the feature that match P. This functionality is actually natively supplied by 598

search engines, and commonly called highlighting. 599

Assuming that we get the sequence of matching n-grams, the problem is therefore 600

reduced to identifying the events that yielded each n-gram during the analysis phase. 601

Since we generally cannot inverse the analyzer, we must keep a correspondence table that 602

associates to each n-gram the sequence of events it originates from. 603

Definition 13 (Reverse Analysis Table). Let D be a descriptor and FT a feature type. The Reverse 604

Analysis Table RAT) (RAT) of D is a 2d table which gives for each n-gram ngr the list of events 605

ei ∈ [1, n] in D for which AFT(e1, · · · , en) = ngr. 606

The RAT must be stored in the system and used on the result set. Given the sequence 607

of matching n-grams [g1, · · · , gk] obtained from the search engine, we compute the union 608

RAT[g1] ∪ RAT[g2] · · · ∪ RAT[gk] and get the sequence of events matching the patterns. 609

6. Implementation 610

In this section, we detail an implementation of our proposed framework for symbolic 611

music collections, i.e., music in a notation-based format such as MIDI, XML and MEI. 612

Since the core musical elements such as structure, melody and rhythm are represented in 613

symbolic music, it is straightforward to develop an extraction of music content descriptors. 614

We offer a publicly available Docker image at https://hub.docker.com/repository/ 615

docker/traversn/scoresim, for the community to experience the proposed search engine. 616

The code is in open access on Github (Components implementation: https://github.com/ 617

cedric-cnam/scoresim) under the GNU General Public License v3.0. 618

In the remainder of the section, we first present the global architecture, before delving 619

into some specific components: descriptor extraction and feature production, integration 620

into a standard text-based Information Retrieval system (centered around ElasticSearch) 621

with several search modes available, customized highlighting and ranking procedures. We 622

also showcase some functionalities of our system, taking advantage of the existing Neuma 623

platform [76] (e.g., Graphical User Interface, and large corpora). 624

6.1. Global Architecture 625

The architecture of our Docker server is illustrated in Figure 18. The main components 626

are: i) an ETL (Extract/Transform/Load) process that receives music documents and 627

produces their musical features, ii) an Elasticsearch server that indexes music features, 628

https://hub.docker.com/repository/docker/traversn/scoresim
https://hub.docker.com/repository/docker/traversn/scoresim
https://hub.docker.com/repository/docker/traversn/scoresim
https://github.com/cedric-cnam/scoresim
https://github.com/cedric-cnam/scoresim
https://github.com/cedric-cnam/scoresim
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Figure 18. A global view of our music search architecture, for symbolic music.

supports searches and ranks results, and iii) implementation of several utility functions, 629

including the matching occurrence identification. All these modules are written in Python. 630

Once instantiated, the server communicates via a REST API which supplies insertion and 631

search services. An external application (such as Neuma) can rely on this API to integrate a 632

search module. 633

Elasticsearch [77] is a tunable search engine which provides several interesting features 634

fitting our needs. It supports scalable data management based on a multi-server architecture 635

with collections sharding, a rich query language, and the capability to tune the scoring 636

function. Note that these features are shared with other search engines such as for instance 637

Solr [78] or Sphinx [79]. The design of our framework relies on its ability to exploit these 638

standard functionalities. Any of the above search engine would be a suitable candidate 639

for supporting our solution and supply a scalable search operation without any further 640

implementation. The main difficulty lies in the integration of an ad-hoc scoring function. 641

The server receives music documents via its REST API. Each document is then submit- 642

ted to a pre-processing phase composed of three steps: Extract, Transform and Load. The 643

Extract phase produces the music content descriptors (see Section 3). A specific extractor is 644

required for each input format. In the case of XML-encoded scores, there exists ready-to-use 645

toolkits such as Musicc21 [80] for parsing the input, accessing relevant data, and structuring 646

this data according to our model. A content descriptor itself is an implementation of our 647

tree-based representation, along with the production of derived representations (pitch 648

sequences, distance operators, etc.). In general, the music document is polyphonic, and we 649

obtain a set of monodic content descriptors. 650

The Transformation step produces features from each monodic content descriptor. We 651

implemented all the features described in Section 4. Finally, the Loading steps sends the n- 652

gram encoded features to Elasticsearch. For scalability reasons, we create one individually 653

indexed document for each single monodic descriptor. This favors parallelism, but requires 654

an aggregation at the document level at the end of the search process. 655

An example of indexed document is given below. It is identified by the pair (doc_id, 656

descr_id), the latter being typically the voice ID found in an XML encoding for such pieces. 657

All features are encoded as 3-grams in our implementation. With each feature comes a RAT 658

field that keeps the correspondence between each n-gram and the list of elements in the 659

original document. 660

{
"_id" : "doc_id:descr_id",
"chromatic" : "7+;3-;2+; 3-;2+;1+; 2+;1+;1-; 1+;1-;5+;...",
"RAT_chromatic" : {[...]},
"diatonic" : "Fi+;T-;Se+ T-;Se+;Se+ Se+;Se+;Se- Se+;Se-;Fo+...",
"RAT_diatonic" : {

"Fi+;T-;Se+": [1, ...],
"T-;Se+;Se+": [2, ...],
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... },
"rhythmic" : "(1)(1/2)(1) (1/2)(1)(2) (1)(2)(1/2) (2)(1/2)(1)...",
"RAT_rhythmic" : {[...]},
"lyrics" : "And now, ....",
"RAT_lyrics" : {[...]}

}

Indexed documents are sent to Elasticsearch which builds the full-text indexes on 661

features, and supplies text-based search operations. New feature extractors could easily be 662

integrated to the system by adding new fields for each indexed document. 663

6.2. Query Processing 664

A query is submitted to the server as a pattern P along with the feature type T. We 665

accept the Plaine and Easie coding formats for P. From this encoding a content descriptor 666

D = extract(P) is built using a dedicated extractor, and a feature of type T is obtained 667

through the standard feature production function. This feature is n-gram encoded and 668

submitted to ElasticSearch as part of a “match_phrase” query. This is illustrated by the 669

following query from the ElasticSearch Domain Specific Language (https://www.elastic.co/ 670

guide/en/elasticsearch/reference/current/query-dsl.html), showing a match_phrase query 671

with a chromatic feature with two 3-grams encoding the following chromatic fragment: 672

two ascending semitones, 2 descending, 1 ascending and 5 descending. 673

{
"query": {

"match_phrase": {"chromatic": "2+;2-;1+ 2-;1+;5-"}
},

"highlight": {"fields" : {"chromatic" : {}}}
}

ElasticSearch carries out the search operation, and at this point we benefit from all the 674

capacities of a top-level indexing system: a set of all the matching documents is retrieved. 675

The non-standard part then occurs: we must rank this set according to the relevant 676

distance (which is not the default one supplied by ElasticSearch for textual data). Elastic- 677

search is a tunable search engine that can be extended with a specific ranking algorithm. 678

We implemented our own SearchScript (https://www.elastic.co/guide/en/elasticsearch/ 679

reference/current/modules-scripting.html), as a Java implementation of the proposed 680

ranking procedures (Sections 5.3 and 5.4). 681

The following example shows how to use our custom ScoreSim ranking function, 682

for a diatonic search and requiring a ranking on the rhythmic part. SearchScript requires 683

to specify the custom plugin name (here “lang:ScoreSim”), and input parameters (here 684

“params”) that will be used in the procedure. Here two parameters are given, the first one 685

gives the searched pattern “query” and the type of similarity that is applied “similarity”. 686

{
"query": {

"function_score": {
"functions":[

{"script_score": {"script": {
"lang": "ScoreSim",
"params": {

"query": "(0|1/2)(1|1)(2|1)",
"similarity":"rhythmic"
}

}}}
]}}

}

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-scripting.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-scripting.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-scripting.html
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6.3. Distribution and Aggregation 687

A major feature of Elasticsearch is its ability to scale up by distributing indexes in 688

a cluster. The fact that we split polyphonic music descriptors as individual monodic 689

documents in the system allows to homogeneously distribute the computation of ScoreSim 690

all over the repository. One obtains a matching score for each monodic descriptor in a 691

distributed context. 692

However it requires to recompose the global score. This is done by applying an 693

aggregate function (the “grouping” phase on Fig. 15). The following example applies 694

three aggregate functions on grouped documents on “doc_id” and the final result is sorted 695

according to the maximum score (“max_scoresim”) over all descriptors. 696

{
"query": {},
"aggs":{"group_score":{

"terms":{
"field":"doc_id",
"order" : { "max_scoresim" : "desc" }

},
"aggs":{

"max_scoresim": {"max" : {"script":"_score"}},
"min_scoresim": {"min" : {"script":"_score"}},
"avg_scoresim": {"avg" : {"script":"_score"}}

}}}
}

6.4. Highlighting 697

Alongside documents identifiers, Elasticsearch provides some information about the 698

matching parts in the selected documents. The following example shows an ElasticSearch 699

JSON result document, featuring the highlight field with two matching occurrences, 700

enclosed in windows delimited by <em> tags. 701

{
"_id" : "doc_id:descr_id",
"_score" : 0.8301817,
"highlight" : {

"chromatic" : ["7+;3-;2+; <em>3-;2+;1+; 2+;1+;1-;</em> 1+;1-;5+;...",
"2+;3-;2+; <em>3-;2+;1+; 2+;1+;1-;</em> 1+;1-;7+;"
]

}
}

From each window, one obtains the n-grams positions and then uses the RAT table 702

(see Section 5.5) to determine the position of each occurrence in the original document. 703

6.5. Interacting with the Server 704

We briefly illustrate how the search server can be integrated in an application manag- 705

ing large collections of scores with Neuma digital library. Neuma [76] maintains corpuses 706

of music scores, encoded in MusicXML and MEI. It features a Graphical User Interface 707

(GUI) to communicate with the search server. Patterns and search mode can be entered 708

with an interactive virtual keyboard (Fig. 19). Search modes correspond to the feature types 709

presented in Section 4. 710

6.6. Data and Performance Evaluation 711

In order to study the performances of our approach, we compare our architecture 712

implemented with Elasticsearch to a traditional pattern search, based on regular expres- 713

sions. We have imported in the Neuma platform [76] a corpus of 14,637 scores from various 714
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Figure 19. Interactive piano keyboard, for query inputs on the Neuma platform.
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Figure 20. Execution time per query wrt. pattern occurrence for the chromatic, diatonic and rhythmic
features. Regular-expressions searches are consistently orders of magnitude more costly than our
ElasticSearch-based implementation.

sources, including Kern@HumDrum (https://kern.humdrum.org/). We then apply differ- 715

ent queries on the whole corpora and report the computation times. We especially focus on 716

applying various patterns, from infrequent to more frequent ones, based on the popularity 717

of the indexed n-grams. 718

We sampled 40 patterns from each of the three chromatic, diatonic and rhythmic 719

feature domains, with different distributions of pattern occurrences. The patterns exhibit 720

different lengths, from 3-grams to 11-grams (which are rather infrequent). In the rhyth- 721

mic domain, for instance, (1)(1)(1) appears 469,222 times in the whole corpus, while 722

(1/2)(2)(1/2)(1)(1)(2)(3/4)(1/3)(2) is found only once. The goal of this test set is 723

to evaluate the scalability of our system and its robustness to various pattern sizes and 724

selectivity. 725

Figure 20 show the execution time in log-scale of each pattern query on the whole 726

corpus. It gives the time spent on 1) a traditional pattern search with regular expressions [49– 727

52] (purple dots), 2) our implementation in a single server of Elasticsearch (blue dots) and 728

3) on a cluster of 3 servers (red dots). 729

The evaluation of regular expressions (regex), without index, must process the whole 730

corpus and scan each extracted feature to find matching occurrences. Consequently, the 731

time is dependent on the size of the corpus. Thus, in all experiments (see Table 1) we obtain 732

a mean time of 246 ms (with a standard deviation of 41 ms) for chromatic features, 250 ms 733

(resp. 21 ms) for diatonic, and 219 ms (resp. 10 ms) for rhythmic. 734

As presented in Section 5.2, a scalable search engine relies on inverted lists. Execution 735

times are much lower, since indexes help to find the proper n-gram and are less dependent 736

on the sizes of the corpora. We can see for the three indexed features that the execution 737

https://kern.humdrum.org/
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Table 1. Global execution time

Feature Mean time Standard deviation

Regex-based search
Chromatic 246 ms 41 ms
Diatonic 250 ms 21 ms
Rhythmic 219 ms 10 ms

1 server
Chromatic 0.869 ms 0.269 ms
Diatonic 0.583 ms 0.194 ms
Rhythmic 0.804 ms 0.136 ms

3 servers
Chromatic 0.312 ms 0.110 ms
Diatonic 0.166 ms 0.064 ms
Rhythmic 0.700 ms 0.216 ms

time is around 1 ms to process queries. This is more than 200 times faster compared to 738

regular expressions. 739

On a single server, the execution time increases with the number of occurrences (see 740

the rhythmic feature on Figure 20c for instance, at around 0.8 ms). This is explained by the 741

fact that inverted lists are longer. This effect can be seen also in a cluster of servers with 742

an execution time of 0.3 ms for chromatic and 0.7 ms for rhythmic features. The gain from 743

a central to a distributed environment is dependent on the distribution of n-grams over 744

the servers. The rhythmic domain has more highly frequent patterns, which explains why 745

execution time does not vary much between 1 and 3 servers (Figure 20c). Conversely, the 746

gain is higher when the patterns are more distributed, which is the case for chromatic and 747

diatonic features. We obtain as much as a 3.5 times speed improvement (three servers vs 748

one). 749

7. Conclusion and future work 750

We presented in this paper a practical approach to the problem of indexing a large 751

library of music documents. Our solution fulfills three major requirements for an informa- 752

tion retrieval system: i) it supports search with a significant part of flexibility, ii) it proposes 753

a ranking method consistent with the matching definition, and iii) it brings scalability 754

thanks to its compatibility with the features of state-of-the-art search engines. We believe 755

that our design is complete, robust, and covers most of the functionalities expected from a 756

scalable search system tailored to the specifics of music information. 757

We fully implemented our solution for the specific situation of XML-encoded music 758

scores, and supply a packaged Docker image for any institution wishing to use a ready- 759

to-use music-oriented search engine. Our solution is also available as a component of 760

the Neuma platform [76], with a user-friendly interface (patterns are input with a piano 761

keyboard) and a large collection of scores to illustrate the operation of the framework. 762

There exists many directions of research to extend the current work: integration 763

to other music representations; extension of the features set and refinement of the core 764

information retrieval modules (searching and ranking). 765

If we turn to alternative representation, the most important seem audio and digitized 766

score sheets (massively found in patrimonial archives). In both cases, the focus is on the 767

development of a specific extractor for the considered format, the rest of the framework 768

being unchanged. For audio documents, extracting a music content descriptor is akin to 769

Automatic Music Transcription (AMT) [81]. As detailed in Section 2, this is an active area of 770

research. Satisfying result are obtained (in research labs) for monophonic music, whereas 771

polyphonic music transcription is still a challenging problem. Regarding digitized score 772

sheets, the tool of choice is Optical Music Recognition (OMR). OMR modules are proposed 773

as part of commercial music notation editors. The result depends on the quality of the image 774

supplied to the system. In general, it is still difficult to avoid a manual post-correction. 775

Our team is active in both directions, and in both cases we target a goal which is less 776

ambitious and more specific than full fledged AMT or OMR. Indeed, both aim at producing 777



Version March 7, 2022 submitted to Big Data Cogn. Comput. 24 of 27

a complete music score, featuring an adequate placement of graphical elements (notes, 778

staves, clefs). In our approach, we would satisfy ourselves with the mere extraction of a 779

core info-set sufficient to build our content descriptor, avoiding therefore the burden of 780

dealing with complex graphic representation issues. This simplifies the target, but does not 781

keep from addressing the other important issues regarding in particular the quality of the 782

result. 783

The search engine could also be extended with a faceting capability, to enhance filtering 784

the search result page and organize relevant documents. Another future direction is to add 785

new features. Some could be extracted from symbolic music data, such as harmony and 786

tonality. Some may require data in audio format, like timbre, since certain types of features 787

are only available for extraction in audio. The major challenge of this task is to rank the 788

search result of queries targeted on such features. 789

Finally, the ranking part of the search engine could be more versatile. In the fu- 790

ture, ranking with geometric measures [82], transposition distance [83] or Dynamic Time 791

Warping based approaches [84,85] could be integrated in the system. 792
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